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Random noise and pole dynamics in unstable front propagation

Zeev Olami, Barak Galanti, Oleg Kupervasser, and Itamar Procaccia
Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76 100, Israel

~Received 10 July 1996!

The problem of flame propagation is studied as an example of unstable fronts that wrinkle on many scales.
The analytic tool of pole expansion in the complex plane is employed to address the interaction of the unstable
growth process with random initial conditions and perturbations. We argue that the effect of random noise is
immense and that it can never be neglected in sufficiently large systems. We present simulations that lead to
scaling laws for the velocity and acceleration of the front as a function of the system size and the level of noise,
and analytic arguments that explain these results in terms of the noisy pole dynamics.
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PACS number~s!: 47.27.Gs, 47.27.Jv, 05.40.1j
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I. INTRODUCTION

The aim of this paper is to examine the role of rando
fluctuations on the dynamics of growing wrinkled interfac
that are governed by nonlinear equations of motion. We
interested in those examples for which the growth of a fla
smooth interface is inherently unstable. A famous exam
of such growth phenomena is provided by Laplacian grow
patterns@1–3#. The experimental realization of such patter
is seen, for example, in Hele-Shaw cells@1# in which air or
another low-viscosity fluid is displacing oil or some oth
high-viscosity fluid. Under normal conditions the advanci
fronts do not remain flat; in channel geometries they form
time a stable finger whose width is determined by delic
effects that arise from the existence of surface tension
radial geometry, the growth of the interface forms a co
torted and ramified fractal shape. A related phenomenon
been studied in a model equation for flame propagation
has the same linear stability properties as the Laplac
growth problem@4#. The physical problem in this case is th
of premixed flames that exist as self-sustaining fronts of e
thermic chemical reactions in gaseous combustion. Exp
ments@5# on flame propagation in radial geometry show th
the flame front accelerates as time goes on and roughens
characteristic exponents. Both observations did not rec
proper theoretical explanations. It is notable that the chan
and radial growth are markedly different; the former leads
a single giant cusp in the moving front, whereas the la
exhibits infinitely many cusps that appear in a complex h
archy as the flame front develops@6,7#.

Analytic techniques to study such processes are avail
@8#. In the context of flame propagation@7,9–11# and in La-
placian growth in the zero surface-tension limit@12–14# one
can examine solutions that are described in terms of pole
the complex plane. This description is very useful in prov
ing a set of ordinary differential equations for the positio
of the poles, from which one can deduce the geometry of
developing front in an extremely economical and efficie
way. Unfortunately, this description is not available in t
case of Laplacian growth with surface tension and this ma
the flame propagation problem very attractive. However
suffers from one fundamental drawback. For the noise
equation the pole dynamics always conserves the numbe
551063-651X/97/55~3!/2649~15!/$10.00
re
r
le
h

n
e
In
-
as
at
n

-
ri-
t
ith
ve
el
o
r
-

le

in
-
s
e
t

es
it
ss
of

poles that existed in the initial conditions. As a result, the
is a final degree of ramification that is afforded by every
of initial conditions even in the radial geometry and it is n
obvious how to describe the continuing self-similar grow
that is seen in experimental conditions or numerical simu
tions. Furthermore, as mentioned before, at least in the c
of flame propagation, one observes@5# anaccelerationof the
flame front with time. Such a phenomenon is impossi
when the number of poles is conserved. It is therefore tem
ing to conjecture that noise may have an important role
affecting the actual growth phenomena that are observe
such systems. In fact, the effect of noise on unstable fr
dynamics has not been adequately addressed in the litera
From the point of view of analytic techniques, noise c
certainly generate new poles even if the initial conditions h
a finite number of poles. The subject of pole dynamics w
the existence of random noise and the interaction betw
random fluctuations and deterministic front propagation
the main issues of this paper.

We opt to study the example of flame propagation rat
than Laplacian growth simply because the former has an a
lytic description in terms of poles also in the experimenta
relevant case of finite viscosity. We choose to limit t
present study to channel geometry. The reason is that in
dial geometry it is more difficult to disentangle the effects
external noise from those of initial conditions. After all, in
tially the system can contain infinitely many poles, very f
away near infinity in the complex plane~and therefore hav-
ing an infinitely small contribution to the interface!. Since
the growth of the radius changes the stability of the syste
more and more of these poles might fall down to the real a
and become observable. In channel geometry the analys
the effect of initial conditions is relatively straightforwar
and one can understand it before focusing on the~more in-
teresting! effects of external noise@9#. The basic reason fo
this is that in this geometry the noiseless steady-state s
tion for the developed front is known analytically. As d
scribed in Sec. II, in a channel of widthL the steady-state
solution is given in terms ofN(L) poles that are organize
on a line parallel to the imaginary axis. It can be shown t
for any number of poles in the initial conditions this is th
only attractor of the pole dynamics. After the establishm
of this steady state we can begin to systematically exam
2649 © 1997 The American Physical Society
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the effects of external noise on this solution. As stated
fore, in radial conditions there is no stable steady state wi
finite number of poles and the disentanglement of initial v
sus external perturbations is less straightforward@7#. We be-
lieve, nevertheless, that the insights provided in this pa
have relevance for radial growth as well, as will be discus
in Sec. VI and in forthcoming papers.

We have a number of goals in this paper. First, after
troducing the pole decomposition, the pole dynamics,
the basic steady state, we will present a stability analysi
the solutions of the flame propagation problem in a chan
geometry. It will be shown that the giant cusp solution
linearly stable, but nonlinearly unstable. These results, wh
are described in Sec. III, can be obtained either by lineariz
the dynamics around the giant cusp solutions in order
study the stability eigenvalues or by examining perturbati
in the form of poles in the complex plane. The main result
Sec. III is that there exists one Goldstone mode and
modes whose eigenvalues hit the real axis periodically w
the system sizeL increases. Thus the system is margina
stable at particular values ofL and it is always nonlinearly
unstable, allowing finite-size perturbations to introduce n
poles into the system. This insight allows us to underst
the relation between the system size and the effects of no
In Sec. IV we discuss the relaxation dynamics that ens
after starting the system with ‘‘small’’ initial data. We stud
the coarsening process that leads in time to the final solu
of the giant cusp and understand from this what the typ
time scales are that exist in our dynamics. We offer in t
section some results of numerical simulations that are in
preted in the later sections. In Sec. V we focus on the p
nomenon of acceleration of the flame front and its relation
the existence of noise. In noiseless conditions the velocit
the flame front in a finite channel is bounded@9#. This can be
shown either by using the pole dynamics or directly from
equation of motion. We will present the results of numeri
simulations where the noise is controlled and show how
velocity of the flame front is affected by the level of th
noise and the system size. The main results are the foll
ing. ~i! Noise is responsible for introducing new poles to t
system.~ii ! For low levels of noise the velocity of the flam
front scales with the system size with a characteristic ex
nent.~iii ! There is a phase transition at a sharp~but system-
size-dependent! value of the noise level, after which the b
havior of the system changes qualitatively.~iv! After the
phase transition the velocity of the flame front changes v
rapidly with the noise level. In Sec. VI we remark on th
implications of these observations for the scaling behavio
the radial growth problem and present a summary and c
clusions.

II. EQUATIONS OF MOTION
AND POLE DECOMPOSITION
IN THE CHANNEL GEOMETRY

It is known that planar flames freely propagating throu
initially motionless homogeneous combustible mixtures
intrinsically unstable. It was reported that such flames
velop characteristic structures that include cusps and u
usual experimental conditions the flame front accelerate
time goes on. A model in 111 dimensions that pertains t
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the propagation of flame fronts in channels of widthL̃ was
proposed in@4#. It is written in terms of positionh(x,t) of
the flame front above thex axis. After appropriate rescaling
it takes the form

]h~x,t !

]t
5
1

2 F]h~x,t !

]x G21n
]2h~x,t !

]x2
1I $h~x,t !%11. ~1!

The domain is 0,x,L̃, n is a parameter, and we use pe
odic boundary conditions. The functionalI @h(x,t)# is the
Hilbert transform, which is conveniently defined in terms
the spatial Fourier transform

h~x,t !5E
2`

`

eikxĥ~k,t !dk, ~2!

I @h~k,t !#5ukuĥ~k,t !. ~3!

For the purpose of introducing the pole decomposition it
convenient to rescale the domain to 0,u,2p. Performing
this rescaling and denoting the resulting quantities with
same notation we have

]h~u,t !

]t
5

1

2L2 F]h~u,t !

]u G21 n

L2
]2h~u,t !

]u2
1
1

L
I $h~u,t !%11.

~4!

In this equationL5L̃/2p. Next we change variables t
u(u,t)[]h(u,t)/]u. We find

]u~u,t !

]t
5
u~u,t !

L2
]u~u,t !

]u
1

n

L2
]2u~u,t !

]u2
1
1

L
I $u~u,t !%.

~5!

It is well known that the flat front solution of this equation
linearly unstable. The linear spectrum ink representation is

vk5uku/L2nk2/L2. ~6!

There exists a typical scalekmax that is the last unstable mod

kmax5
L

n
. ~7!

Nonlinear effects stabilize a new steady state, which is d
cussed next.

The outstanding feature of the solutions of this equation
the appearance of cusplike structures in the develop
fronts. Therefore, a representation in terms of Fourier mo
is very inefficient. Rather, it appears very worthwhile to re
resent such solutions in terms of sums of functions of po
in the complex plane. It will be shown below that the po
tion of the cusp along the front is determined by the r
coordinate of the pole, whereas the height of the cusp i
correspondence with the imaginary coordinate. Moreove
will be seen that the dynamics of the developing front can
usefully described in terms of the dynamics of the pol
Following @8,9,11,7#, we expand the solutionsu(u,t) in
functions that depend onN poles whose position
zj (t)[xj (t)1 iy j (t) in the complex plane is time dependen
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55 2651RANDOM NOISE AND POLE DYNAMICS IN UNSTABLE . . .
u~u,t !5n(
j51

N

cotFu2zj~ t !

2 G1c.c.

5n(
j51

N
2sin@u2xj~ t !#

cosh@yj~ t !#2cos@u2xj~ t !#
, ~8!

h~u,t !52n(
j51

N

ln$cosh@yj~ t !#2cos@u2xj~ t !#%1C~ t !.

~9!

In Eq. ~9!, C(t) is a function of time. The function~9! is a
superposition of quasicusps~i.e., cusps that are rounded
the tip!. The real part of the pole position~i.e., xj ) is the
coordinate~in the domain@0,2p#) of the maximum of the
quasicusp and the imaginary part of the pole position~i.e.,
yj ) is related to the depth of the quasicusp. Asyj decreases
the depth of the cusp increases. Asyj→0 the depth diverges
to infinity. Conversely, whenyj→` the depth decreases t
zero.

The main advantage of this representation is that
propagation and wrinkling of the front can be described
the dynamics of the poles. Substituting Eq.~8! in Eq. ~5!, we
derive the following ordinary differential equations for th
positions of the poles:

2L2
dzj
dt

5Fn (
k51,kÞ j

2N

cotS zj2zk
2 D 1 i

L

2
sgn@ Im~zj !#G .

~10!

We note that in Eq.~8!, due to the complex conjugation, w
have 2N poles that are arranged in pairs such that
j,N, zj1N5 z̄j . In the second sum in Eq.~8! each pair of
poles contributed one term. In Eq.~10! we again employ
2N poles since all of them interact. We can write the po
dynamics in terms of the real and imaginary partsxj and
yj . Because of the arrangement in pairs it is sufficient
write the equation for eitheryj.0 or yj,0. We opt for the
first. The equations for the positions of the poles read

2L2
dxj
dt

5n (
k51,kÞ j

N

sin~xj2xk!$@cosh~yj2yk!

2cos~xj2xk!#
211@cosh~yj1yk!

2cos~xj2xk!#
21%, ~11!

L2
dyj
dt

5n (
k51,kÞ j

N S sinh~yj2yk!

cosh~yj2yk!2cos~xj2xk!

1
sinh~yj1yk!

cosh~yj1yk!2cos~xj2xk!
D1n coth~yj !2L.

~12!

We note that if the initial conditions of the differential equ
tion ~5! are expandable in a finite number of poles, the
equations of motion preserve this number as a function
time. On the other hand, this may be an unstable situation
the partial differential equation and noise can change
number of poles. This issue will be examined at length
e
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e
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Sec. V. We turn now to a discussion of the steady-state
lution of the equations of the pole dynamics.

Qualitative properties of the stationary solution

The steady-state solution of the flame front propagating
channels of width 2p was presented in Ref.@9#. Using these
results, we can immediately translate the discussion t
channel of widthL. The main results are summarized
follows.

~i! There is only one stable stationary solution that is g
metrically represented by a giant cusp~or, equivalently, one
finger! and analytically byN(L) poles that are aligned on
one line parallel to the imaginary axis. The existence of t
solution is made clearer with the following remarks.

~ii ! There exists an attraction between the poles along
real line. This is obvious from Eq.~11!, in which the sign of
dxj /dt is always determined by sin(xj2xk). The resulting
dynamics merges all thex positions of poles whosey posi-
tion remains finite.

~iii ! They positions are distinct and the poles are align
above each other in positionsyj21,yj,yj11 with the maxi-
mal beingyN(L) . This can be understood from Eq.~12!, in
which the interaction is seen to be repulsive at short rang
but changes sign at longer ranges.

~iv! If one adds an additional pole to such a solution, t
pole ~or another! will be pushed to infinity along the imagi
nary axis. If the system has less thanN(L) poles it is un-
stable to the addition of poles and any noise will drive t
system towards this unique state. The numberN(L) is

N~L !5F12 S Ln 11D G , ~13!

where @ # is the integer part. To see this consider a syst
with N poles and such that all the values ofyj satisfy the
condition 0,yj,ymax. Add now one additional pole whos
coordinates areza[(xa ,ya) with ya@ymax. From the equa-
tion of motion forya @Eq. ~12!# we see that the terms in th
sum are all of the order of unity, as is the cot(ya) term. Thus
the equation of motion ofya is approximately

dya
dt

'n
2N11

L2
2
1

L
. ~14!

The fate of this pole depends on the number of other pole
N is too large the pole will run to infinity, whereas ifN is
small the pole will be attracted towards the real axis. T
condition for moving away to infinity is thatN.N(L),
whereN(L) is given by Eq.~13!. On the other hand, they
coordinate of the poles cannot hit zero. Zero is a repuls
line and poles are pushed away from zero with infinite v
locity. To see this consider a pole whoseyj approaches zero
For any finite L the term coth(yj) grows unboundedly,
whereas all the other terms in Eq.~12! remain bounded.

~v! The height of the cusp is proportional toL. The dis-
tribution of positions of the poles along the line of consta
x was worked out in@9#.

We will refer to the solution with all these properties
the Thual-Frisch-He´non ~TFH! cusp solution. Next we turn
to the stability analysis of this solution.
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FIG. 1. First ten highest eigenvalues of th
stability matrix with n51, multiplied by the
square of the system sizeL2 vs the system size
L. Note that all the eigennvalues oscillate arou
fixed values in this presentation and that the hig
est two eigenvalues hit zero periodically.
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III. LINEAR STABILITY ANALYSIS
IN CHANNEL GEOMETRY

In this section we discuss the linear stability of the TF
cusp solution. To this aim we first use Eq.~8! to write the
steady solutionus(u) in the form

us~u!5n(
j51

N
2sin@u2xs#

cosh@yj #2cos@u2xs#
, ~15!

where xs is the real ~common! position of the stationary
poles andyj their stationary imaginary position. To study th
stability of this solution we need to determine the act
positions yj . This is done numerically by integrating th
equations of motion for the poles starting fromN poles in
initial positions and waiting for relaxation. Next one pertur
this solution with a small perturbationf(u,t):
u(u,t)5us(u)1f(u,t). Linearizing the dynamics for sma
f results in the equation of motion

]f~u,t !

]t
5

1

L2
$]u@us~u!f~u,t !#1n]u

2f~u,t !%

1
1

L
I „f~u,t !…. ~16!

A. Fourier decomposition and eigenvalues

The linear equation can be decomposed in Fourier mo
according to

f~u,t !5 (
k52`

`

f̂k~ t !e
iku, ~17!

us~u!522n i (
k52`

`

(
j51

N

sgn~k!e2ukuyjeiku. ~18!

In these sums the discretek values run over all the integers
Substituting in Eq.~16!, we get the equations
l

es

df̂k~ t !

dt
5(

n
aknf̂n~ t !, ~19!

whereakn is an infinite matrix whose entries are given by

akk5
uku
L

2
n

L2
k2, ~20!

akn5
k

L2
sgn~k2n!S 2n(

j51

N

e2uk2nuyj D , kÞn. ~21!

To solve for the eigenvalues of this matrix we need to tru
cate it at some cutoffk vectork* . The choice ofk* can be
based on the linear stability analysis of the flat front. T
scalekmax @cf. Eq. ~7!# is the largestk that is still linearly
unstable. We must choosek*.kmax and test the choice by
the converegence of the eigenvalues. The chosen valu
k* in our numerics was 4kmax. The results for the low-orde
eigenvalues of the matrixakn that were obtained from a con
verged numerical calculation are presented in Fig. 1. T
eigenvalues are multiplied byL2 and are plotted as a func
tion of L. We order the eigenvalues in decreasing order a
denote them asl0<l1<l2<•••. The figure offers a num-
ber of qualitative observations.

~i! There exists an obvious Goldstone or translatio
mode us8(u) with eigenvaluel050, which is shown with
rhombuses in Fig. 1. This eigenmode stems from the G
ilean invariance of the equation of motion.

~ii ! The eigenvalues oscillate periodically between valu
that areL independent in this presentation~in which we mul-
tiply by L2). In other words, up to the oscillatory behavio
the eigenvalues depend onL like L22.

~iii ! The eigenvaluesl1 andl2, which are represented b
squares and circles in Fig. 1, hit zero periodically. The fun
tional dependence in this presentation appears almost p
wise linear.

~iv! The higher eigenvalues also exhibit similar qualit
tive behavior, but without reaching zero. We note that
solution becomes marginally stable for every value ofL for
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FIG. 2. Comparison of the numerically dete
mined, highest four eigenvalues of the stabili
matrix with the prediction of the pole analysis
The eigenvalues of the stability matrix arel0

~squares!, l1 ~rhombuses!, l2 ~triangles!, and
l3 ~slanted triangles!. The pole analysis~solid
line! provides a qualitative understanding of th
stability and appears to overlap with the highe
eigenvector over half of the range and with th
fourth eigenvalue over the other half.
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which the eigenvaluesl1 andl2 hit zero. TheL
22 depen-

dence of the spectrum indicates that the solution beco
more and more sensitive to noise asL increases.

B. Qualitative understanding using pole analysis

The most interesting qualitative aspects are those enu
ated above as items~ii ! and ~iii !. To understand them it is
useful to return to the pole description, and to focus on
~14!. This equation describes the dynamics of a single
away pole. We remarked before that this equation shows
for fixed L the stable number of poles is the integer part~13!.
Define now the numbera, 0<a<1, according to

a5F12 S Ln 11D G2
1

2 S Ln 21D . ~22!

Using this number we rewrite Eq.~14! as

dya
dt

'
2n

L2
a. ~23!

As L increases,a oscillates piecewise linearly and period
cally between zero and unity. This shows that a distant p
that is added to the giant cusp solution is usually repelled
infinity except whena hits zero and the system becom
marginally unstable to the addition of a new pole.

To connect this to the linear stability analysis we no
from Eq. ~8! that a single faraway pole solution~i.e., with
y very large! can be written as

u~u,t !54ne2y~ t !sin@u2x~ t !#. ~24!

Suppose that we add to our giant cusp solution a perturba
of this functional form. From Eq.~23! we know thaty grows
linearly in time and therefore this solution decays expon
tially in time. The rate of decay is a linear eigenvalue of t
stability problem and from Eq.~23! we understand both th
1/L2 dependence and the periodic marginality. We sho
note that this way of thinking gives us a significant part
the L dependence of the eigenvalues, but not all. The v
es
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able a is rising from zero to unity periodically, but afte
reaching unity it hits zero instantly. Accordingly, if the high
est nonzero eigenvalue were fully determined by the p
analysis, we would expect this eigenvalue to behave as
solid line shown in Fig. 2. The actual highest eigenva
computed from the stability matrix is shown in rhombus
connected by dotted line. It is clear that the pole analy
gives us a great deal of qualitative and quantitative und
standing, but not all the features agree.

C. Dynamics near marginality

The discovery of marginality at isolated values ofL poses
questions regarding the fate of poles that are added at
largey’s at certainx positions. We will argue now that whe
the system becomes marginally stable, a new pole can
added to those existing in the giant cusp. We remember
these poles have a commonu position that we denote a
u5uc . The fate of a new pole added at infinity depends
its u position. If the position of the new pole is again denot
as ya and `@ya@ymax, we can see from Eq.~12! that
dya /dt is maximal whenua5uc , whereas it is minimal
whenua2uc5p. This follows from the fact that the cosin
term has a value11 whenua5uc and a value21 when
ua2uc5p. For large-y differences the terms in the sum tak
on their minimal value when the cosine term is21 and their
maximal values at11. For infinitely largeya the equation of
motion is Eq.~14!, which is independent ofua . Since the
right-hand side of this equation becomes zero at margina
we conclude that for very large but finiteya , dya /dt
changes sign from positive to negative whenua2uc changes
from zero top. The meaning of this observation is that th
most unstable points in the system are those points that
farthest away from the giant cusp. It is interesting to disc
the fate of a pole that is added to the system at such a p
tion. From the point of view of the pole dynamic
u5uc1p is an unstable fixed point for the motion along th
u axis. The attraction to the giant cusp exactly vanishes
this point. If we start with a pole at a very largeya close to
this value ofu the downfall along they coordinate will be
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faster than the lateral motion towards the giant cusp.
therefore expect to see the creation of a small cusp au
values close top that precedes a later stage of motion
which the small cusp moves to merge with the giant cu
Upon the approach of the new pole to the giant cusp all
existing poles will move up and the farthest pole atymaxwill
be kicked off to infinity. We will later explain that this typ
of dynamics occurs in stable systems that are driven
noise. The noise generates far away poles~in the imaginary
direction! that get attracted aroundu5uc1p to create small
cusps that run continuously towards the giant cusp.

D. Nonlinear stability

The intuition gained so far can be used to discuss
issue of stability of a stable system tolarger perturbations. In
other words, we may want to add to the system poles at fi
values ofy and ask about their fate. We first show in th
subsection that poles whose initialy value is below
ymax; ln(L2/n2) will be attracted towards the real axis. Th
scenario is similar to the one described in the preceding s
section.

Suppose that we generate a stable system with a g
cusp atuc50 with poles distributed along they axis up to
ymax. We know that the sum of all the forces that act on t
upper pole is zero. Consider then an additional pole inse
in the position (p,ymax). It is obvious from Eq.~12! that the
forces acting on this pole will pull it downward. On the oth
hand, if its initial position is much aboveymax the force on it
will be repulsive towards infinity. We see that this simp
argument identifiesymax as the typical scale for nonlinea
instability.

Next we estimateymax and interpret our result in terms o
the amplitudeof a perturbation of the flame front. We ex
plained that uppermost pole’s position fluctuates betwee
minimal value and infinity asL is changing. We want to
estimate the characteristic scale of the minimal value
ymax(L). To this aim we employ the result of Ref.@9# regard-
ing the stable distribution of pole positions in a stable la
system. The parametrization of@9# differs from ours; to go
from our parametrization in Eq.~5! to theirs we need to
rescaleu by L21 and t by L. The parametern in their pa-
rametrization isn/L in ours. According to@9#, the number of
poles betweeny and y1dy is given by ther(y)dy, where
the densityr(y) is

r~y!5
L

p2n
ln@coth~ uyu/4!#. ~25!

To estimate the minimal value ofymaxwe require that the tai
of the distributionr(y) integrated between this value an
infinity will allow one single pole. In other words,

E
ymax

`

dyr~y!'1. ~26!

Expanding Eq.~25! for largey and integrating explicitly the
result in Eq.~26!, we end up with the estimate

ymax'2lnF 4Lp2nG . ~27!
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For largeL this result isymax' ln(L2/n2). If we now add an
additional pole in the position (u,ymax) this is equiva-
lent to perturbing the solutionu(u,t) with a function
ne2ymaxsin(u), as can be seen directly from Eq.~8!. We thus
conclude that the system is unstable to a perturbationlarger
than

u~u!;n3sin~u!/L2. ~28!

This indicates a very strong size dependence of the sens
ity of the giant cusp solution to external perturbations. T
will be an important ingredient in our discussion of noi
systems.

IV. INITIAL CONDITIONS, POLE DECOMPOSITION,
AND COARSENING

In this section we show first that any initial conditions c
be approximated by pole decomposition. Later we show t
the dynamics of sufficiently smooth initial data can be w
understood from the pole decomposition. Finally, we emp
this picture to describe theinverse cascadeof cusps into the
giant cusp that is the final steady state. By inverse casc
we mean a nonlinear coarsening process in which the s
scales coalesce in favor of larger scales and finally the
tem staturates at the largest available scale@16#.

A. Pole expansion: General comments

The fundamental question is how many poles are nee
to describe any given initial condition. The answer,
course, depends on how smooth are the initial conditio
Suppose also that we have an initial functionu(u,t50) that
is 2p periodic and at timet50 admits a Fourier representa
tion

u~u!5 (
k51

`

Aksin~ku1fk!, ~29!

with Ak.0 for all k. Suppose that we want to find a pole
decomposition representationup(u) such that

uup~u!2u~u!u<e for everyu, ~30!

wheree is a given wanted accuracy. Ifu(u) is differentiable
we can cut the Fourier expansion at some finitek5K know-
ing that the remainder is smaller than, say,e/2. Choose now
a large numberM and a small numberD!1/M and write the
pole representation forup(u) as

up~u!5 (
k51

K

(
p50

M21
2k sin~ku1fk!

cosh@k~yk1pD!#2cos~ku1fk!
.

~31!

To see that this representation is a particular form of
general formula~8! we use the two identities

(
k50

`

e2ktsinxk5
1

2

sinx

cosht2cosx
, ~32!

(
k50

K21

sin~x1ky!5sinS x1
K21

2
yD sinKy2 csc

y

2
. ~33!
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From these follows a third identity

(
j50

K21 2sinS x2
2p j

K
1f D

coshy2cosS x2
2p j

K
1f D 5

2K sin~Kx1f!

coshKy2cos~Kx1f!
.

~34!

Note that the left-hand side of Eq.~34! is of the form ~8!
with K poles whose positions are all on the lineyj5y and
whosexj are on the lattice points 2p j /K2f. On the other
hand, every term in Eq.~31! is of this form.

Next we use Eq.~32! to rewrite Eq.~31! in the form

up~u!5 (
k51

K

(
p50

M21

(
n51

`

4ke2nk~yk1pD!sin~nku1nfk!.

~35!

Exchanging the order of summation betweenn and p, we
can perform the geometric sum onp. Denoting

bn,k[ (
p50

M21

e2nkpD5
12e2MknD

12e2knD , ~36!

we find

up~u!5 (
k51

K

(
n51

`

4kbn,ke
2nkyksin~nku1nfk!

5 (
k51

K

(
n52

`

4kbn,ke
2nkyksin~nku1nfk!

1 (
k51

K

4kb1,ke
2kyksin~ku1fk!. ~37!

Compare now the second term on the right-hand side of
~37! with Eq. ~29!. We can identify

e2kyk5
Ak

4kb1,k
. ~38!

The first term can be then bound from above as

U(
k51

K

(
n52

`

4kbn,ke
2nkyksin~nku1nfk!U

<(
k51

K

(
n52

` U4kbn,kF Ak

4kb1,k
Gnsin~nku1nfk!U. ~39!

The sine function and the factor (4K)12n can be replaced by
unity and we can bound the right-hand side of Eq.~39! by

(
k51

K

(
n52

` F Ak

b1,k
Gnbn,k<(

k51

K

Ak(
n51

` F Ak

b1,k
Gn, ~40!

where we have used the fact thatbn,k<b1,k , which follows
directly from Eq.~36!. Using now the facts thatb1,K<b1,k
for everyk<K andAk is bounded by some finiteC since it
is a Fourier coefficient, we can bound Eq.~40! by
C2K/(b1,K2C). Since we can select the free parametersD
q.

andM to makeb1,K as large as we want, we can make t
remainder series smaller in absolute value thane/2.

The conclusion of this demonstration is that any init
condition that can be represented in Fourier series can
approximated to a desired accuracy by pole decomposit
The number of needed poles is of the orderK2M . Of course,
the number of poles thus generated by the initial conditio
may exceed the numberN(L) found in Eq.~13!. In such a
case the excess poles will move to infinity and will becom
irrelevant for the short-time dynamics. Thus a smaller nu
ber of poles may be needed to describe the state at la
times than att50. We need to stress at this point that t
pole decomposition is overcomplete; for example, if there
exactly one pole att50 and we use the above technique
reach a pole decomposition we would get a large numbe
poles in our representation.

B. Initial stages of the front evolution: The exponential stage
and the inverse cascade

In this section we employ the connection between Fou
expansion and pole decomposition to understand the in
exponential stage of the evolution of the flame front w
small initial datau(u,t50). Next we employ our knowledge
of the pole interactions to explain the slow dynamics
coarsening into the steady-state solution.

Suppose that initially the expansion~29! is available with
all the coefficientsAk!1. We know from the linear instabil-
ity of the flat flame front that each Fourier compone
changes exponentially in time according to the linear sp
trum ~6!. The components with wave vector larger than E
~7! decrease, whereas those with lower wave vectors
crease. The fastest growing mode iskc5L/2n. In the linear
stage of growth this mode will dominate the shape of
flame front, i.e.,

u~u,t !'Akc
evkc

tsin~kcu!. ~41!

Using Eq.~34! for a large value ofy ~which is equivalent to
smallAkc

) we see that toO(Akc
2 ) Eq. ~41! can be represente

as a sum overL/2n poles arranged periodically along theu
axis. Other unstable modes will contribute similar arrays
poles, but at much higher values ofy since their amplitude is
exponentially smaller. In addition, we have nonlinear corr
tions to the identification of the modes in terms of pole
These corrections can be again expanded in terms of Fo
modes and again identified with poles, which will be farth
away along they axis and with higher frequencies. To se
this one can use Eq.~37!, subtract fromup(u) the leading
pole representations, and reexpand in a Fourier series. T
we identify the leading order with double the number
poles that are situated twice as far away along they axis.

We note that even when all the unstable modes
present, the number of poles in the first-order identification
finite for finite L since there are onlyL/n unstable modes
Counting the number of poles that each mode introduces
get a total number of (L/n)2 poles. The numberL/2n of
poles that are associated with the most unstable mode is
cisely the number allowed in the stable stationary soluti
cf. Eq.~13!. When the poles approach the real axis and cu
begin to develop, the linear analysis no longer holds, but
pole description does.
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FIG. 3. Inverse cascade process of coarsen
that occurs after preparing the system with ra
dom, small initial conditions. One sees that
successive times the typical scale increases u
the giant cusp forms and attracts all the other s
poles. The effect of the existing numerical add
tive noise is to introduce poles that appear as s
cusps that are continuously attracted to the gi
cusp. This effect is obvious to the eye only aft
the typical scale is sufficiently large, as is seen
the last time~see the text for further details!.
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We now describe the qualitative scenario for the est
lishment of the steady state. First, we understand that all
poles that belong to less unstable modes will be pushed
wards infinity. To see this, think of the system at this stage
an array of uncoupled systems with a scale of the orde
unity. Each such system will have a characteristic value
y. As we discussed before, poles that are farther away a
the y axis will be pushed to infinity. Therefore the syste
will remain with theL/2n poles of the most unstable mod
The net effect of the poles belonging to the~nonlinearly!
stable modes is to destroy the otherwise perfect periodi
of the poles of the unstable mode. To see the effect of
higher-order correction to the pole identification we ag
recall that they can be represented as farther away poles
higher frequencies, whose dynamics is similar to the l
unstable modes that were just discussed. They do not
come more relevant when time goes on.

Once the poles of the stable modes get sufficiently
from the real axis, the dynamics of the remaining poles w
begin to develop according to the interactions that are
rected along the real axis. These interactions are m
weaker and the resulting dynamics occur on much lon
time scales. The qualitative picture is of an inverse casc
of merging theu positions of the poles. We note that th
system has a set of unstable fixed points that are ‘‘cellu
solutions’’ described by a periodic arrangement of po
along the real axis with a frequencyk. These fixed points are
not stable and they collapse, under perturbations, wit
characteristic time scale~which depends onk) to the next
unstable fixed point atk85k/2. This process then goes o
indefinitely until k;1/L, i.e., we reach the giant cusp, th
steady-state stable solution@16#.

This scenario is seen very clearly in the numerical sim
lations. In Fig. 3 we show the time evolution of the flam
front starting from small white-noise initial conditions. Th
bottom curve pertains to the earliest time in this picture, j
after the fast exponential growth, and one sees clearly
periodic array of cusps that form. The successive ima
show the progress of the flame front in time and one
serves the development of larger scales with deeper c
-
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that represent the partial coalescence of poles onto the s
u positions. In Fig. 4 we show the width and the velocity
this front as a function of time. One recognizes the expon
tial stage of growth in which theL/2n poles approach the
u axis and then a clear crossover to much slower dynamic
which the effective scale in the system grows with a slow
rate.

The slow dynamics stage can be understood qualitativ
using the previous interpretation of the cascade as follow
the initial number of poles belonging to the unstable mode
L/2n, the initial effective linear scale is 2n. Thus the first
step of the inverse cascade will be completed in a time s
of the order of 2n. At this point the effective linear scale
doubles to 4n and the second step will be completed af
such a time scale. We want to know what the typical len
scalel t seen in the system at timet is. The typical width of
the system at this stage will be proportional to this scale

Denote the number of cascade steps that took place
this scale is achieved bysl . The total time elapsedt( l t) is
the sum

t~ l t!;(
i51

sl

2i . ~42!

The geometric sum is dominated by the largest term and
therefore estimatet( l t); l t . We conclude that the scale an
the width are linear in the time elapsed from the initial co
ditions (l t;tz,z51). In noiseless simulations we find~see
Fig. 4! a value ofz that isz'0.9560.1.

C. Inverse cascade in the presence of noise

An interesting consequence of the discussion in the p
ceding subsection is that the inverse cascade process
effective ‘‘clock’’ that measures the typical time scales
this system. For future purposes we need to know the typ
time scales when the dynamics is perturbed by random no
To this aim we ran simulations following the inverse casca
in thepresenceof external noise. The main result that will b
used in later arguments is that now the appearance of a
cal scalel t occurs not after timet, but rather according to
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FIG. 4. Log-log plots of the front velocity
~lower curve! and width~upper curve! as a func-
tion of time in the inverse cascade process seen
Fig. 3 in a system of size 2000 andn51. Both
quantities exhibit an initial exponential growt
that turns to a power-law growth~after t'30).
The velocity is constant after this time and th
width increases liketz. Note that at the earlies
time there is a slight decrease in the velocity; th
is due to the decay of linearly stable modes th
exist in random initial conditions.
5.
it

e
g

a
a
t

ation
eal
by

in
usp

ng
ion
ise
the
the

ise
l t;tz, z'1.260.1. ~43!

The numerical confirmation of this law is exhibited in Fig.
We also find that the front velocity in this case increases w
time according to

v;tg, g'0.4860.05. ~44!

This result will be related to the acceleration of the flam
front in noisy simulations, as will be seen in the followin
sections. The result~43! will be helpful in Sec. VC in esti-
mating the values of the scaling exponents.

V. ACCELERATION OF THE FLAME FRONT, POLE
DYNAMICS, AND NOISE

A major motivation of this section is the observation th
in radial geometry the same equation of motion shows
acceleration of the flame front. The aim of this section is
h

t
n
o

argue that this phenomenon is caused by the noisy gener
of new poles. Moreover, it is our contention that a great d
can be learned about the acceleration in radial geometry
considering the effect of noise in channel growth. In Ref.@9#
it was shown that any initial condition that is represented
poles goes to a unique stationary state that is the giant c
that propagates with a constant velocityv51/2 up to small
1/L corrections. In light of our discussion of the precedi
section, we expect that any smooth enough initial condit
will go to the same stationary state. Thus if there is no no
in the dynamics of a finite channel, no acceleration of
flame front is possible. What happens if we add noise to
system?

For concreteness we introduce an additive white-no
termh(u,t) to the equation of motion~5! where

h~u,t !5(
k

hk~ t !exp~ iku! ~45!
e

w
f

FIG. 5. The same as Fig. 4, but with additiv
random noise for a system of size 1000,n50.1,
and f510213. The velocity does not saturate no
and the exponentz characterizing the increase o
the width with time changes toz51.260.1. The
velocity increases in time like tg with
g'0.4860.04.
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FIG. 6. Log-log plot of the velocity as a func
tion of system size for different values of th
noise amplitude Af52.5310213, 2.531029,
2.531027, 1026, 431026, and 2.531025and
n50.1. For low values off we observe a power-
law behaviorv;Lm, m'0.4260.03. For larger
values off there is a crossover to a stronger d
pendence on the system size; see the text for
tails.
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and the Fourier amplitudeshk are correlated according to

^hk~ t !hk8
* ~ t8!&5 fd~k2k8!d~ t2t8!. ~46!

We will first examine the result of numerical simulations
noise-driven dynamics and later return to the theoret
analysis.

A. Noisy simulations

Previous numerical investigations@6,15# did not introduce
noise in a controlled fashion. We will argue later that so
of the phenomena encountered in these simulations ca
ascribed to the~uncontrolled! numerical noise. We per
formed numerical simulations of Eq.~5! using a pseudospec
tral method. The Adams-Bashforth time-stepping sche
was chosen with second-order precision in time. The addi
white noise was generated in Fourier space by choosinghk
l

e
be

e
e

for every k from a flat distribution in the interva
@2A2 f ,A2 f #. We examined the average steady-state vel
ity of the front as a function ofL for fixed f and as a function
of f for fixed L. We found the interesting phenomena th
are summarized here.

~i! When the noise levelf is fixed the average velocity
v increases withL; see Fig. 6. There are two different re
gimes of this behavior. For sufficiently small values off and
L we observe a power law dependence ofv on L:

v;Lm, m'0.4260.03. ~47!

For large values off and L the dependence ofv on L is
much stronger,m.1.5, but we cannot estimate it well be
cause of a lack of dynamical range. For a given value of
the transition between the two regimes appears upon incr
ing L and we denote the critical value asLc( f ); see Fig. 7.
The data indicate that
r

sp

ct;
ils.
he
FIG. 7. Critical value ofL as a function off
for which the transition from weaker to stronge
dependence ofv on L is observed; see Fig. 6. In
regime I the noise is relatively small and the cu
picture is qualitatively correct. In regime II the
noise is too large to leave the cusp picture inta
see the text and Figs. 9 and 10 for further deta
The data indicate a power law as explained in t
text.
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FIG. 8. Log-log plot of the velocity vs the
noise amplitude for different system sizesL̃55,
10, 40, and 160 andn50.1.
y

Lc~ f !; f2a, ~48!

with a'1.060.2.
~ii ! When the system sizeL is fixed the average velocity

depends onf as
v; f j. ~49!

For sufficiently small value off this dependence is ver
weak andj'0.02; see Fig. 8. For large values off the de-
pendence is much stronger,j5160.1.
e effect
s
cusps
FIG. 9. Typical flame fronts in regime I of Fig. 7, where the system is sufficiently small not to be terribly affected by the noise. Th
of noise in this regime is to add additional small cusps to the giant cusp. In~a!–~d! we present fronts for growing system size
L̃510, 20, 40, and 80, respectively,n50.1, andAf52.531029. One can observe that when the system size grows there are more
with a more complex structure.
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~iii ! The locus separating weaker dependences ofv on L
and f ~regime I! from stronger dependences~regime II! is
shown in Fig. 7. The giant cusp remains recognizable in b
regimes. In regime I one observes a series of small cu
superposed on the structure of the giant cusp. In Fig. 9
show a set of interfaces with a growing size and with
same noise. One can observe a strong increase in the nu
of cusps and the complexity of their arrangements as
system size increases. In regime II there are strong fluc
tions in the gradient fieldu(u,t); see Fig. 10.

~iv! Measurements of the width of the front indicate tha
has a a very weak dependence onf for fixed L in regime I.

B. Theoretical discussion of the effect of noise

1. Threshold of instability to added noise

First we present the theoretical arguments that explain
sensitivity of the giant cusp solution to the effect of add
noise. This sensitivity increases dramatically with increas
the system sizeL. To see this we use again the relationsh
between the linear stability analysis and the pole dynam

Our additive noise introduces perturbations with allk vec-
tors. We showed previously that the most unstable mod
thek51 componentA1sin(u). Thus the most effective nois
perturbation ish1sin(u), which can potentially lead to a
growth of the most unstable mode. Whether or not this m
will grow depends on the amplitude of the noise. To see
clearly we return to the pole description. For small values
the amplitudeA1 we representA1sin(u) as a single pole so
lution of the functional formne2ysinu. The y position is
determined fromy52 lnuA1u/n and theu position isu5p for
positiveA1 andu50 for negativeA1. From the analysis of
Sec. III we know that for very smallA1 the fate of the pole
is to be pushed to infinity, independently of itsu position;
the dynamics is symmetric inA1→2A1 when y is large
enough. On the other hand, when the value ofA1 increases
the symmetry is broken and theu position and the sign o
A1 become very important. IfA1.0 there is a threshold
value of y below which the pole is attracted down. On th
other hand, ifA1,0 andu50 the repulsion from the pole

FIG. 10. Typical flame front in regime II of Fig. 7. The syste
size is 160 and the noise amplitude is 2.531025. This is sufficient
to cause a qualitative change in the appearance of the flame f
the noise introduces significant levels of small scales structur
addition to the cusps.
th
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of the giant cusp grows with decreasingy. We thus under-
stand that, qualitatively speaking, the dynamics ofA1 is
characterized by an asymmetric ‘‘potential’’ according to

Ȧ152
]V~A1!

]A1
, ~50!

V~A1!5lA1
22aA1

31•••. ~51!

From the linear stability analysis we know thatl'n/L2; cf.
Eq. ~14!. We know further that the threshold for nonline
instability is atA1'n3/L2; cf. Eq. ~28!. This determines tha
value of the coefficienta'2/3n2. The magnitude of the po
tential at the maximum is

V~Amax!'n7/L6. ~52!

The effect of the noise on the development of the mo
A1sinu can be understood from the stochastic equation

Ȧ152
]V~A1!

]A1
1h1~ t !. ~53!

It is well known @17# that for such dynamics the rate o
escapeR over the potential barrier for small noise is propo
tional to

R;
n

L2
exp~2n7/ f L6!. ~54!

The conclusion is that any arbitrarily tiny noise becom
effective when the system size increases and whenn de-
creases. If we drive the system with noise of amplitudef the
system can always be sensitive to this noise when its
exceeds a critical valueLc , which is determined by
f;n7/Lc

6 . ForL.Lc the noise will introduce new poles int
the system. Even numerical noise in simulations involvi
large size systems may have a macroscopic influence.

The appearance of new poles must increase the velo
of the front. The velocity is proportional to the mean
(u/L)2. New poles distort the giant cusp by addition
smaller cusps on the wings of the giant cusp, increasingu2.
Upon increasing the noise amplitude more and more sma
cusps appear in the front and inevitably the velocity
creases. This phenomenon is discussed quantitatively
Sec. V.

2. The noisy steady state and its collapse with large noise
and system size

In this subsection we discuss the response of the g
cusp solution to noise levels that are able to introduce a la
number of excess poles in addition to those existing in
giant cusp. We will denote the excess number of poles
dN. The first question that we address is how difficult it is
insert yet an additional pole when there is already a giv
excessdN. To this aim we estimate the effective potenti
VdN(A1), which is similar to Eq.~51!, but takes into accoun
the existence of an excess number of poles. A basic appr
mation that we employ is that the fundamental form of t
giant cusp solution is not seriously modified by the existen
of an excess number of poles. Of course, this approxima

nt:
in
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breaks down quantitatively already with one excess p
Qualitatively, however, it holds well until the excess numb
of poles is of the order of the original numberN(L) of the
giant cusp solution. Another approximation is that the res
the linear modes play no role in this case. At this point
limit the discussion, therefore, to the situationdN!N(L).

To estimate the parameterl in the effective potential we
consider the dynamics of one pole whosey positionya is far
aboveymax. According to Eq.~14!, the dynamics reads

dya
dt

'
2n@N~L !1dN#

L2
2
1

L
. ~55!

Since theN(L) term cancels against theL21 term~cf. Sec. II
A!, we remain with a repulsive term that in the effecti
potential translates to

l5
ndN

L2
. ~56!

Next we estimate the value of the potential at the break-e
point between attraction and repulsion. In Sec. V B 1 we s
that a foreign pole has to be inserted belowymax in order to
be attracted towards the real axis. Now we need to push
new pole below the position of the existing pole whose ind
is N(L)2dN. This position is estimated as in Sec. III C b
employing the TFH distribution function~25!. We find

ydN'2lnF 4L

p2ndNG . ~57!

As before, this implies a threshold value of the amplitude
single pole solutionAmaxsinu that is obtained from equatin
Amax5neydN. We thus find in the present cas
Amax;n3(dN)2/L2. Using again a cubic representation f
the effective potential we finda52/3n2dN and

V~Amax!5
1

3

n7~dN!5

L6
. ~58!

Repeating the calculation of the escape rate over the po
tial barrier, we find in the present case

R;
ndN

L2
exp@2n7~dN!5/ f L6#. ~59!

For a given noise amplitudef there is always a value o
L and n for which the escape rate is ofO(1) as long as
dN is not too large. WhendN increases the escape rate d
creases, and eventually no additional poles can creep into
system. The typical numberdN for fixed values of the pa-
rameters is estimated from equating the argument in the
ponent to unity

dN'~ f L6/n7!1/5. ~60!

The most important consequence of this relation is thatdN
increases withL faster thanN(L). Accordingly, we expect a
breakdown of this picture and of the weak-noise behav
when dN'N(L), which occurs whenL reaches a critica
valueLc( f ), where
e.
r

f
e

n
w

he
x

f

n-

-
he

x-

r

Lc~ f !; f21. ~61!

This prediction is in good quantitative agreement with E
~48!, supporting the analytical theory.

C. Acceleration of the flame front due to noise

In this section we estimate the scaling exponents t
characterize the velocity of the flame front as a function
the system size. Our arguments in this section are even
solid than the previous ones, but, nevertheless, we bel
that we succeed in capturing some of the essential qualita
physics that underlies the interaction between noise and
stability and results in the acceleration of the flame front

To estimate the velocity of the flame front we need
write down an equation for the mean of^dh/dt& given an
arbitrary numberN of poles in the system. This equatio
follows directly from Eq.~4!:

K dhdt L 5
1

L2
1

2pE0
2p

u2du. ~62!

After substitution of Eq.~8! in Eq. ~62! we get, using Eqs.
~11! and ~12!,

K dhdt L 52n(
k51

N
dyk
dt

12S nN

L
2

n2N2

L2 D . ~63!

The estimates of the second and third terms in this equa
are straightforward. WritingN5N(L)1dN(L) and remem-
bering thatN(L)5n/L, we find that these terms contribut
2ndN(L)/L;2L1/5. The first term will contribute only
when the current of poles is asymmetric. Since noise in
duces poles at a finite value ofy, whereas the rejected pole
stream towards infinity, we have an asymmetry that cont
utes to the velocity of the front. To estimate the first term
remind the reader of our discussion in Sec. IV C. In th
problem the typical time scale for the poles is the coa
scense time of poles with an initial distanceL in thex direc-
tion. In noiseless conditions the typical time scales likeL. In
the presence of noise@cf. Eq. ~43!# we found numerically in
Sec. IV C that it scales likeL1/z. Accordingly, the typical
flux of poles can be estimated asdN(L)/L1/z. Thus the cur-
rent( ẏk has a stronger dependence onL, i.e.,L

6/521/z. Tak-
ing the numerical value ofz51.2 we conclude that Eq.~63!
predicts a scaling law~47! with m50.37, in reasonable
agreement with the numerics.

We should stress at this point that the argument is
complete. First, we used the inverse cascade measureme
invoke a typical time scale for the coalescence of poles
motion along thex axis when the distance between them
L, and we used this time scale for the coalescence of pole
a system whose integral scale isL. This can be taken only a
a lower bound of the exponent characterizing the time sc
beacuse of the intervention of additional modes in the lar
system. The simple identification is a sort of ‘‘single-mode
approximation in which the dynamics is carried by the m
unstable mode only. Second, we measured the exponen
lating the velocity to the amplitude of external noise@cf. Eq.
~49!# and found thatj is considerably smaller than the valu
1/5, which is predicted by the previous argument. This in
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cates that the typical time scale also has an explicitf depen-
dence that is physically plausible, but it was not measure
our simulations.

VI. SUMMARY AND CONCLUSIONS

The two main messages of this paper are that~i! there is
an important interaction between the instability of develo
ing fronts and random noise and~ii ! this interaction and its
implications can be understood qualitatively and sometim
quantitatively using the description in terms of compl
poles. The pole description is natural in this context, fi
because it provides an exact~and effective! representation of
the steady state without noise. Once one succeeds in des
ing also theperturbationsabout this steady state in terms
poles, one achieves a particularly transparent language
the study of the interplay between noise and instability. T
language also allows us to describe in qualitative and se
quantitative terms the inverse cascade process of increa
typical lengths when the system relaxes to the steady s
from small, random initial conditions.

The main conceptual steps in this paper are as follo
First, one realizes that the steady-state solution, which
characterized byN(L) poles aligned along the imaginar
axis, is marginally stable against noise in a periodic array
L values. For all values ofL the steady state is nonlinear
unstable against noise. The main and foremost effect of n
of a given amplitudef is to introduce an excess number
polesdN(L, f ) into the system. The existence of this exce
number of poles is responsible for the additional wrinkling
the flame front on top of the giant cusp and for the obser
acceleration of the flame front. By considering the noisy
pearance of new poles we rationalize the observed sca
laws as a function of the noise amplitude and the sys
size.

Theoretically, we therefore concentrate on estimat
dN(L, f ). The measurements do not test our theoretical c
sideration directly, but rather test the dependence of the
locity on L and f . The only direct test for our theory is th
critical line shown in Fig. 7. The measured exponent is
accord with our analytic estimates. Nevertheless, we n
that some of our considerations are only qualitative. For
ample, we estimateddN(L, f ) by assuming that the gian
cusp solution is not seriously perturbed. On the other ha
we find a flux of poles going to infinity due to the introdu
tion of poles at finite values ofy by the noise. The existenc
of poles spread betweenymax and infinity is a significant
perturbation of the giant cusp solution. Thus also the co
parison between the various scaling exponents measured
predicted must be done with caution; we cannot guaran
that those cases in which our prediction hits close to
in

-

s

t

rib-

for
s
i-
ing
te

s.
is

f

se

s
f
d
-
ng
m

g
n-
e-

te
-

d,

-
nd
e
e

measurement mean the theory is quantitative. However,
believe that our consideration extracts the essential ingr
ents of a correct theory.

The ‘‘phase diagram’’ as a function ofL and f in this
system consists of three regimes. In the first one, discus
in Sec. V B 1, the noise is too small to have any effect on
giant cusp solution. In the second the noise introduces ex
poles that serve to decorate the giant cusp with side cusp
this regime we find scaling laws for the velocity as a functi
of L and f and we are reasonably successful in understa
ing the scaling exponents. In the third regime the noise
large enough to create small-scale structures that are
neatly understood in terms of individual poles. It appe
from our numerics that in this regime the roughening of t
flame front gains a contribution from the small-scale stru
ture in a way that is reminiscent ofstable, noise driven
growth models such as the Kardar-Parisi-Zhang model.

One of our main motivations in this research was to u
derstand the phenomena observed in radial geometry
expanding flame fronts. A full analysis of this problem ca
not be presented here. We note, however, that many of
insights offered above translate immediately to that proble
Indeed, in radial geometry the flame front accelerates
cusps multiply and form a hierarchic structure as tim
progresses. Since the radius~and the typical scale! increase
in this system all the time, new poles will be added to t
system even by a vanishingly small noise. The marginal
bility found above holds also in this case and the system
allow the introduction of excess poles as a result of no
The results discussed in Ref.@7# can be combined with the
present insights to provide a theory of radial growth. Th
theory will be offered in a forthcoming paper.

Finally, the success of this approach in the case of fla
propagation raises hope that Laplacian growth patterns
be dealt with using similar ideas. A problem of immedia
interest is Laplacian growth in channels, in which a fing
steady-state solution is known to exist. It is documented t
the stability of such a finger solution to noise decreases
idly with increasing the channel width. In addition, it is un
derstood that noise brings about additional geometric f
tures on top of the finger. There are enough similarities h
to indicate that a careful analysis of the analytic theory m
shed as much light on that problem as on the present on
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