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Random noise and pole dynamics in unstable front propagation

Zeev Olami, Barak Galanti, Oleg Kupervasser, and Itamar Procaccia
Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76 100, Israel
(Received 10 July 1996

The problem of flame propagation is studied as an example of unstable fronts that wrinkle on many scales.
The analytic tool of pole expansion in the complex plane is employed to address the interaction of the unstable
growth process with random initial conditions and perturbations. We argue that the effect of random noise is
immense and that it can never be neglected in sufficiently large systems. We present simulations that lead to
scaling laws for the velocity and acceleration of the front as a function of the system size and the level of noise,
and analytic arguments that explain these results in terms of the noisy pole dynamics.
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I. INTRODUCTION poles that existed in the initial conditions. As a result, there
is a final degree of ramification that is afforded by every set
The aim of this paper is to examine the role of randomof initial conditions even in the radial geometry and it is not
fluctuations on the dynamics of growing wrinkled interfacesobvious how to describe the continuing self-similar growth
that are governed by nonlinear equations of motion. We ar¢hat is seen in experimental conditions or numerical simula-
interested in those examples for which the growth of a flat otions. Furthermore, as mentioned before, at least in the case
smooth interface is inherently unstable. A famous exampl@f flame propagation, one obsen(&$ anaccelerationof the
of such growth phenomena is provided by Laplacian growttflame front with time. Such a phenomenon is impossible
patterngd1-3]. The experimental realization of such patternswhen the number of poles is conserved. It is therefore tempt-
is seen, for example, in Hele-Shaw cdll§ in which air or  ing to conjecture that noise may have an important role in
another low-viscosity fluid is displacing oil or some other affecting the actual growth phenomena that are observed in
high-viscosity fluid. Under normal conditions the advancingsuch systems. In fact, the effect of noise on unstable front
fronts do not remain flat; in channel geometries they form indynamics has not been adequately addressed in the literature.
time a stable finger whose width is determined by delicatd-rom the point of view of analytic techniques, noise can
effects that arise from the existence of surface tension. lieertainly generate new poles even if the initial conditions had
radial geometry, the growth of the interface forms a con-a finite number of poles. The subject of pole dynamics with
torted and ramified fractal shape. A related phenomenon hdbe existence of random noise and the interaction between
been studied in a model equation for flame propagation thatandom fluctuations and deterministic front propagation are
has the same linear stability properties as the Laplaciathe main issues of this paper.
growth problen{4]. The physical problem in this case is that We opt to study the example of flame propagation rather
of premixed flames that exist as self-sustaining fronts of exothan Laplacian growth simply because the former has an ana-
thermic chemical reactions in gaseous combustion. Experiytic description in terms of poles also in the experimentally
ments[5] on flame propagation in radial geometry show thatrelevant case of finite viscosity. We choose to limit the
the flame front accelerates as time goes on and roughens wighiesent study to channel geometry. The reason is that in ra-
characteristic exponents. Both observations did not receivdial geometry it is more difficult to disentangle the effects of
proper theoretical explanations. It is notable that the channedxternal noise from those of initial conditions. After all, ini-
and radial growth are markedly different; the former leads tdially the system can contain infinitely many poles, very far
a single giant cusp in the moving front, whereas the latteaway near infinity in the complex plar{and therefore hav-
exhibits infinitely many cusps that appear in a complex hiering an infinitely small contribution to the interfaceSince
archy as the flame front develops,7]. the growth of the radius changes the stability of the system,
Analytic techniques to study such processes are availablmore and more of these poles might fall down to the real axis
[8]. In the context of flame propagati$i,9—11 and in La- and become observable. In channel geometry the analysis of
placian growth in the zero surface-tension lifdie—14 one  the effect of initial conditions is relatively straightforward
can examine solutions that are described in terms of poles iand one can understand it before focusing on(there in-
the complex plane. This description is very useful in provid-teresting effects of external noisg3]. The basic reason for
ing a set of ordinary differential equations for the positionsthis is that in this geometry the noiseless steady-state solu-
of the poles, from which one can deduce the geometry of théion for the developed front is known analytically. As de-
developing front in an extremely economical and efficientscribed in Sec. Il, in a channel of width the steady-state
way. Unfortunately, this description is not available in the solution is given in terms oN(L) poles that are organized
case of Laplacian growth with surface tension and this makeen a line parallel to the imaginary axis. It can be shown that
the flame propagation problem very attractive. However, itfor any number of poles in the initial conditions this is the
suffers from one fundamental drawback. For the noiselesenly attractor of the pole dynamics. After the establishment
equation the pole dynamics always conserves the number of this steady state we can begin to systematically examine
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the effects of external noise on this solution. As stated bethe propagation of flame fronts in channels of WiE_tfwas
fore, in radial conditions there is no stable steady state with @roposed in(4]. It is written in terms of positiorh(x,t) of

finite number of poles and the disentanglement of initial verthe flame front above the axis. After appropriate rescalings

sus external perturbations is less straightforwaidWe be- it takes the form

lieve, nevertheless, that the insights provided in this paper

have relevance for radial growth as well, as will be discussedh(x,t) 1

in Sec. VI and in forthcoming papers. gt 2
We have a number of goals in this paper. First, after in-

troducing the pole decomposition, the pole dynamics, ani

dh(x,t)
X

2 52h(x,t)
X2

+{h(D 1. (D)

the basic steady state, we will present a stability analysis o h_e domain is @:X<-L-’ visa parame_ter, and we use pert-
the solutions of the fla[me propagation problem in a chann c_ilc boundary cond|_t|on_s. The fu.nctlonbl]h.(x,t)]. s the

. . .~ " Hilbert transform, which is conveniently defined in terms of
geometry. It will be shown that the giant cusp solution IS¢he spatial Fourier t f
? . . patial Fourier transform
linearly stable, but nonlinearly unstable. These results, which
are described in Sec. lll, can be obtained either by linearizing w0
the dynamics around the giant cusp solutions in order to h(x,t)=f e*h(k,t)dk, 2
study the stability eigenvalues or by examining perturbations -
in the form of poles in the complex plane. The main result of .
Sec. Ill is that there exists one Goldstone mode and two I[h(k,t)]=]|k|h(k,t). (3)
modes whose eigenvalues hit the real axis periodically when
the system sizé& increases. Thus the system is marginally For the purpose of introducing the pole decomposition it is
stable at particular values &f and it is always nonlinearly convenient to rescale the domain tec@<2. Performing
unstable, allowing finite-size perturbations to introduce newthis rescaling and denoting the resulting quantities with the
poles into the system. This insight allows us to understangame notation we have
the relation between the system size and the effects of noise.
In Sec. IV we discuss the relaxation dynamics that ensueg/h(6,t) 1 [5h(0,t) 2 v h(ot) 1

after starting the system with “small” initial data. We study — gt 202| 98 | 112 262 +E|{h(6’t)}+l'

the coarsening process that leads in time to the final solution (4

of the giant cusp and understand from this what the typical _

time scales are that exist in our dynamics. We offer in thisin this equationL=L/27. Next we change variables to
section some results of numerical simulations that are intera(9,t)=dh(#6,t)/96. We find

preted in the later sections. In Sec. V we focus on the phe-

nomenon of acceleration of the flame front and its relation to gu(6,t) u(6,t) du(6,t) v Ju(6,t)

the existence of noise. In noiseless conditions the velocity of — 5 =7 2 a0 + L2 362 +E|{U(9:t)}-

the flame front in a finite channel is bound&€d. This can be (5)
shown either by using the pole dynamics or directly from the

equation of motion. We will present the results of numericalit is well known that the flat front solution of this equation is
simulations where the noise is controlled and show how théinearly unstable. The linear spectrumkrrepresentation is
velocity of the flame front is affected by the level of the

noise and the system size. The main results are the follow- o =K|/L— vk?/L2. (6)
ing. (i) Noise is responsible for introducing new poles to the

system.(ii) For low levels of noise the velocity of the flame There exists a typical scalg,,, that is the last unstable mode
front scales with the system size with a characteristic expo-

nent.(iii) There is a phase transition at a shéopt system- L

size-dependenwalue of the noise level, after which the be- kmax:;- (7)
havior of the system changes qualitative(jv) After the

phase transition the velocity of the flame front changes veryqnjinear effects stabilize a new steady state, which is dis-
rapidly with the noise level. In Sec. VI we remark on the . ssed next.

implications of these observations for the scaling behavior of o outstanding feature of the solutions of this equation is

the radial growth problem and present a summary and COthe appearance of cusplike structures in the developing

clusions. fronts. Therefore, a representation in terms of Fourier modes
is very inefficient. Rather, it appears very worthwhile to rep-
resent such solutions in terms of sums of functions of poles
in the complex plane. It will be shown below that the posi-
tion of the cusp along the front is determined by the real
coordinate of the pole, whereas the height of the cusp is in
It is known that planar flames freely propagating throughcorrespondence with the imaginary coordinate. Moreover, it
initially motionless homogeneous combustible mixtures arewill be seen that the dynamics of the developing front can be
intrinsically unstable. It was reported that such flames deusefully described in terms of the dynamics of the poles.
velop characteristic structures that include cusps and undéllowing [8,9,11,4, we expand the solutions(6,t) in
usual experimental conditions the flame front accelerates dainctions that depend onN poles whose position
time goes on. A model in +1 dimensions that pertains to z;(t)=x;(t) +iy;(t) in the complex plane is time dependent:

Il. EQUATIONS OF MOTION
AND POLE DECOMPOSITION
IN THE CHANNEL GEOMETRY
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N 0—1z,(1) Sec. V. We turn now to a discussion of the steady-state so-
u(o,t)= vz cot{ 2' lution of the equations of the pole dynamics.
i=1
2sin 0—Xj(t)] Qualitative properties of the stationary solution
N VJ- =1 coshy;(t)]—cog 6—x;(t)]’ ® The steady-state solution of the flame front propagating in
channels of width Z was presented in Ref9]. Using these
N results, we can immediately translate the discussion to a
h(6,t)=2v>, In{coshy;(t)]—cog 6—x;(t)]}+ C(t). channel of widthL. The main results are summarized as
=1 follows.
9 (i) There is only one stable stationary solution that is geo-

metrically represented by a giant cu@p, equivalently, one
fingen and analytically byN(L) poles that are aligned on
one line parallel to the imaginary axis. The existence of this
solution is made clearer with the following remarks.

(i) There exists an attraction between the poles along the

) X real line. This is obvious from Edq11), in which the sign of
yj) is related to the depth of the quasicusp. Asdecreases dx; /dt is always determined by si(-xJ. The resulting

the depth of the cusp increases. ¥is- 0 the depth diverges g namics merges all the positions of poles whosg posi-
to infinity. Conversely, whery;—c the depth decreases to tion remains finite.

zero.

The main advantage of this representation is that th
propagation and wrinkling of the front can be described vi
the dynamics of the poles. Substituting E8). in Eq. (5), we
derive the following ordinary differential equations for the
positions of the poles:

In Eqg. (9), C(1) is a function of time. The functio) is a
superposition of quasicusgse., cusps that are rounded at
the tip. The real part of the pole positiofi.e., ;) is the
coordinate(in the domain[0,27]) of the maximum of the
quasicusp and the imaginary part of the pole posifios,

(iii) They positions are distinct and the poles are aligned
bove each other in positiogs_; <y;<y;, with the maxi-
9mal beingyy() - This can be understood from E@.2), in
which the interaction is seen to be repulsive at short ranges,
but changes sign at longer ranges.

(iv) If one adds an additional pole to such a solution, this
pole (or anothey will be pushed to infinity along the imagi-
+i Esgr{lm(z-)] _ nary axis. If the system has less thii(L) poles it is un-

2 ! stable to the addition of poles and any noise will drive the

(100  system towards this unique state. The num¥dél) is

297 _
dt

2N
Zj —Zy
v 2 co 2

k=Tk+#]

We note that in Eq(8), due to the complex conjugation, we
have 2N poles that are arranged in pairs such that for
<N, zj+N=z_j. In the second sum in Ed8) each pair of
poles contributed one term. In E¢LO) we again employ where[] is the integer part. To see this consider a system
2N poles since all of them interact. We can write the polewijth N poles and such that all the values yf satisfy the
dynamics in terms of the real and imaginary patfsand  condition 0<y;<Ypa,. Add now one additional pole whose
y;. Because of the arrangement in pairs it is sufficient tocoordinates are,=(x,,Y5) With Y33 Ymax. From the equa-
write the equation for eithey;>0 ory;<0. We opt for the  tion of motion fory, [Eq. (12)] we see that the terms in the
first. The equations for the positions of the poles read sum are all of the order of unity, as is the gg)(term. Thus
the equation of motion of, is approximately

1
N(L)=

> , (13

L
—+1
14

—L2%=v }N: sin(x; — x){[ coshy: — y)
dt VSt i % YiTYk dy, 2N+1 1
oI (14
—cogX;—x) ]t +[costy;+yy)
— cog X —x0]7 1, (11) Th_e fate of this pole deper_1ds on th(_e n_u_mber of other_p_oles. If
N is too large the pole will run to infinity, whereas ¥ is
dv. N sinh(y: — ) small the pole will be attracted towards the real axis. The
L2l=v > Yi~ Y condition for moving away to infinity is thatN>N(L),
dt  k=Tk#j | COSHY;—yi) —COSX)—X,) whereN(L) is given by Eq.(13). On the other hand, thg
sinh(y; +yi) coordinate of the poles cannot hit zero. Zero is a repulsive
YiT Y +v cothly;)—L. line and poles are pushed away from zero with infinite ve-
coshty; +yi) — cosx; — X,) locity. To see this consider a pole whoseapproaches zero.

(12) For any finite L the term cothy;) grows unboundedly,
whereas all the other terms in Ed.2) remain bounded.

We note that if the initial conditions of the differential equa-  (v) The height of the cusp is proportional ko The dis-
tion (5) are expandable in a finite number of poles, thesdribution of positions of the poles along the line of constant
equations of motion preserve this number as a function ok was worked out if9].
time. On the other hand, this may be an unstable situation for We will refer to the solution with all these properties as
the partial differential equation and noise can change théhe Thual-Frisch-Heon (TFH) cusp solution. Next we turn
number of poles. This issue will be examined at length into the stability analysis of this solution.



2652 OLAMI, GALANTI, KUPERVASSER, AND PROCACCIA 55

FIG. 1. First ten highest eigenvalues of the
stability matrix with v=1, multiplied by the
square of the system si€® vs the system size
L. Note that all the eigennvalues oscillate around
fixed values in this presentation and that the high-
est two eigenvalues hit zero periodically.

0.0 5.0 10.0

lll. LINEAR STABILITY ANALYSIS do(t)
IN CHANNEL GEOMETRY d—kt => adn(t), (19)
n

In this section we discuss the linear stability of the TFH
cusp solution. To this aim we first use E®) to write the  whereay, is an infinite matrix whose entries are given by
steady solutiorug(6) in the form K
14
. A=—— K>, 20
o % 2sir —x,] 15 KoLL2 20
MOZ 2 sty T cogo w1

Kk N
=—sgrik—n)| 2 “lkenlvi) kR (22
where x¢ is the real(common position of the stationary Bkn Lzsgr( n)( Vj§=:l © ') k#En @)

poles andy; their stationary imaginary position. To study the
stability of this solution we need to determine the actualTo solve for the eigenvalues of this matrix we need to trun-
positionsy; . This is done numerically by integrating the cate it at some cutofk vectork*. The choice ok* can be
equations of motion for the poles starting frashpoles in  based on the linear stability analysis of the flat front. The
initial positions and waiting for relaxation. Next one perturbsscalekny [cf. Eq. (7)] is the largesk that is still linearly
this solution with a small perturbation ¢(6,t): unstable. We must choos€ >k, and test the choice by
u(6,t)=ug(6) + ¢(6,t). Linearizing the dynamics for small the converegence of the eigenvalues. The chosen value of
¢ resdults in the equation of motion k* in our numerics was K,,.,. The results for the low-order
eigenvalues of the matria,,, that were obtained from a con-
ap(o,t) 1 ) verged numerical calculation are presented in Fig. 1. The
o = 29 us(0)d(0,)]+ vdyd(6,1);) eigenvalues are multiplied bly? and are plotted as a func-
tion of L. We order the eigenvalues in decreasing order and
1 denote them a&y<\;<\,<---. The figure offers a num-
+1((6,1). (160 per of qualitative observations.

(i) There exists an obvious Goldstone or translational
mode u,(6) with eigenvalue\y=0, which is shown with
rhombuses in Fig. 1. This eigenmode stems from the Gal-

The linear equation can be decomposed in Fourier modefean invariance of the equation of motion.
according to (i) The eigenvalues oscillate periodically between values

that areL independent in this presentatiGn which we mul-

A. Fourier decomposition and eigenvalues

So. . tiply by L?). In other words, up to the oscillatory behavior
— ko
¢(0,t)—k;x Pi(t) e, (17) the eigenvalues depend anlike L 2.
(iii ) The eigenvalues; andX\,, which are represented by
© N squares and circles in Fig. 1, hit zero periodically. The func-
Ug(6) = —2vi E 2 sgr(k)eKYigike, (18 tiqnal .dependence in this presentation appears almost piece-
k= j=1 wise linear.

(iv) The higher eigenvalues also exhibit similar qualita-
In these sums the discrekevalues run over all the integers. tive behavior, but without reaching zero. We note that the
Substituting in Eq(16), we get the equations solution becomes marginally stable for every valuddbr
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‘\ ! :“ \‘2\ ‘2\ FIG. 2. Comparison of the numerically deter-
} \ A) \ mined, highest four eigenvalues of the stability
-0.5 i o matrix with the prediction of the pole analysis.
! The eigenvalues of the stability matrix ah
; A / \\ / \\ / (squares N, (rhombuses \, (triangles, and
4;‘ I \\ /7” \ A \ /f N3 (slanted triangles The pole analysigsolid
/\ / \ / \ / X line) provides a qualitative understanding of the
\\ / 4 N / stability and appears to overlap with the highest
/ \ | eigenvector over half of the range and with the
|y
\
/ \
\
\

fourth eigenvalue over the other half.

5.0

which the eigenvalues; and\, hit zero. ThelL ~2 depen-

able « is rising from zero to unity periodically, but after
dence of the spectrum indicates that the solution becoma®gaching unity it hits zero instantly. Accordingly, if the high-
more and more sensitive to noise lasncreases.

est nonzero eigenvalue were fully determined by the pole
analysis, we would expect this eigenvalue to behave as the
B. Qualitative understanding using pole analysis

solid line shown in Fig. 2. The actual highest eigenvalue
. . I computed from the stability matrix is shown in rhombuses
The most interesting qualitative aspects are those enum

el . ) :
: - L onnected by dotted line. It is clear that the pole analysis
ated above as itemsi) and iii). T.O _understand them it is gives us a great deal of qualitative and quantitative under-
useful to return to the pole description, and to focus on Eq

X . . , : standing, but not all the features agree.
(14). This equation describes the dynamics of a single far- 9 g
away pole. We remarked before that this equation shows that

for fixed L the stable number of poles is the integer pas.
Define now the numbes, 0<a<1, according to

1L1
-5|=-

C. Dynamics near marginality

The discovery of marginality at isolated valuesLoposes
questions regarding the fate of poles that are added at very
_ 22) largey'’s at certainx positions. We will argue now that when
the system becomes marginally stable, a new pole can be
added to those existing in the giant cusp. We remember that
these poles have a commah position that we denote as
0= 6.. The fate of a new pole added at infinity depends on
its @ position. If the position of the new pole is again denoted
asy, and o>y >y, we can see from Eq(1l2) that
dy,/dt is maximal whené,= 6., whereas it is minimal

1

2

L

a= —+1
v

Using this number we rewrite Eq14) as

dy, 2v
d—ta%Fa’. (23)

As L increasesq oscillates piecewise linearly and periodi-

cally between zero and unity. This shows that a distant polWhen 0a— 0= . This follows from the fact that the cosine

that is added to the giant cusp solution is usually repelled tgg rT ths aFvoarIlljgt V\éjri]figrgieesc tﬁgoie?n:lsliﬂ?els\ilvrzetgke
infinity except whena hits zero and the system becomes "2 c— 9ey
marginally unstable to the addition of a new pole.

on their minimal value when the cosine term-4d and their
To connect this to the linear stability analysis we note'ﬁn"’wm"j‘.I values at-1. For ?nfinitely largey, the quation of
from Eg. (8) that a single faraway pole solutigne., with motion Is Eq.(14), V‘.’h'Ch IS _mdependent 0b,. Since t_he .
y very large can be written as right-hand side of this equation becomes zero at marginality,
we conclude that for very large but finitg,, dy,/dt
changes sign from positive to negative whgn- 6. changes

from zero tow. The meaning of this observation is that the
Suppose that we add to our giant cusp solution a perturbatiomost unstable points in the system are those points that are

of this functional form. From Eq.23) we know thaty grows  farthest away from the giant cusp. It is interesting to discuss
linearly in time and therefore this solution decays exponenthe fate of a pole that is added to the system at such a posi-
tially in time. The rate of decay is a linear eigenvalue of thetion. From the point of view of the pole dynamics
stability problem and from Eq23) we understand both the 6= 6.+ 7 is an unstable fixed point for the motion along the
1/L2 dependence and the periodic marginality. We should® axis. The attraction to the giant cusp exactly vanishes at
note that this way of thinking gives us a significant part ofthis point. If we start with a pole at a very largg close to

the L dependence of the eigenvalues, but not all. The varithis value ofé the downfall along they coordinate will be

u(6,t)=4ve YUsin 6—x(t)]. (24
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faster than the lateral motion towards the giant cusp. Weor largeL this result isym.¢e~In(L%7?). If we now add an
therefore expect to see the creation of a small cusp at additional pole in the position &ym.) this is equiva-
values close tor that precedes a later stage of motion inlent to perturbing the solutioru(6,t) with a function
which the small cusp moves to merge with the giant cuspre Ymasin(¢), as can be seen directly from E®). We thus
Upon the approach of the new pole to the giant cusp all theonclude that the system is unstable to a perturbdtioger

existing poles will move up and the farthest poleyat, will than
be kicked off to infinity. We will later explain that this type 3. 5
of dynamics occurs in stable systems that are driven by u(6)~vsin(6)/L~. (28)

noise. The noise generates far away pdieghe imaginary
direction) that get attracted aroun#= 6.+ 7 to create small
cusps that run continuously towards the giant cusp.

This indicates a very strong size dependence of the sensitiv-
ity of the giant cusp solution to external perturbations. This
will be an important ingredient in our discussion of noisy

) o systems.

D. Nonlinear stability

The intuition gained so far can be used to discuss the Iv. INITIAL CONDITIONS, POLE DECOMPOSITION,
issue of stability of a stable systemlémger perturbations. In AND COARSENING
other words, we may want to add to the system poles at finite
values ofy and ask about their fate. We first show in this  |n this section we show first that any initial conditions can
subsection that poles whose initigt value is below pe approximated by pole decomposition. Later we show that
Ymax IN(L%+?) will be attracted towards the real axis. The the dynamics of sufficiently smooth initial data can be well
scenario is similar to the one described in the preceding sulinderstood from the pole decomposition. Finally, we employ
section. this picture to describe thiaverse cascadef cusps into the

Suppose that we generate a stable system with a giagfant cusp that is the final steady state. By inverse cascade
cusp até.=0 with poles distributed along thg axis up to  we mean a nonlinear coarsening process in which the small
Ymax- We know that the sum of all the forces that act on thescales coalesce in favor of larger scales and finally the sys-
upper pole is zero. Consider then an additional pole insertegm staturates at the largest available s¢a6.
in the position ¢,y ma - It is obvious from Eq(12) that the
forces acting on this pole will pull it downward. On the other A. Pole expansion: General comments
hand, if its initial position is much abowg,,,, the force on it
will be repulsive towards infinity. We see that this simple
argument identifiey/hax as the typical scale for nonlinear
instability.

Next we estimate ., and interpret our result in terms o
the amplitudeof a perturbation of the flame front. We ex-
plained that uppermost pole’s position fluctuates between
minimal value and infinity ad is changing. We want to 3
estimate the characteristic scale of the minimal value of u(g)zz Asinko+ ¢y), (29)
YmaxdL). To this aim we employ the result of R¢€] regard- k=1
ing the stable distribution of pole positions in a stable large . i
sygstem. The parametrizationp[ﬂ] dpiffers from ours; to go ) with Ak>o_ for all k. Suppqse that we want to find a pole-
from our paran;etrization in Eq(5) to theirs we need to decomposition representatian(6) such that
rescaleu by L™~ andt by L. The parametep in their pa- _ <
rametrization isv/L in ours. According tq9], the number of lup(0)—u(O)| e for every, (30
poles betweery andy+dy is given by thep(y)dy, where  wheree is a given wanted accuracy. Uf 6) is differentiable

The fundamental question is how many poles are needed
to describe any given initial condition. The answer, of
course, depends on how smooth are the initial conditions.
¢ Suppose also that we have an initial functio®,t=0) that
is 27r periodic and at timé=0 admits a Fourier representa-
gon

the densityp(y) is we can cut the Fourier expansion at some fikiteK know-
L ing that the remainder is smaller than, saf2. Choose now
_ large numbeM and a small numbek <1/M and write the
= ——In[coth(|y|/4)]. 25 @ .
Py 2y n[coth|y|/4)] @9 pole representation far,(6) as

To estimate the minimal value §f,,,we require that the tail A 2k sin(k6+ ¢,)

of the distributionp(y) integrated between this value and Up( 0):2:1 p§=:0 coshik(y,+ pA)]—cogko+ ¢y)

infinity will allow one single pole. In other words, (31)
* To see that this representation is a particular form of the
L dyp(y)~=1. (260 general formula8) we use the two identities
. . . . - 1 sinx
Expanding Eq(25) for largey and integrating explicitly the > e Mgimkk= = ———— (32
k=0 2 cosh—cos’

result in Eq.(26), we end up with the estimate
K-1

4L . o
?_J (27) 2 sin(x+ky)=sin|

k=0

K1\ Ky vy o
X+Ty sm7cscz. (33

max~=21Nn
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From these follows a third identity

K-1

>

=0 27Tj
costy—cog x— T+

. 2]
2sinx=—==+¢ 2K sin(Kx+ ¢)

) - costKy—cogKx+ ¢) "’

(34

Note that the left-hand side of E¢34) is of the form(8)
with K poles whose positions are all on the lipe=y and
whosex; are on the lattice points2j/K - ¢. On the other
hand, every term in Eq31) is of this form.

Next we use Eq(32) to rewrite Eq.(31) in the form

K M-1 o
up(a)=k§1 pzo ngl 4ke™"HYHPASin KO+ neby) .
(39

Exchanging the order of summation betwaerand p, we
can perform the geometric sum @n Denoting

1_ekanA

M-1
bn k= pZO e_”km:?km—- (36)

—e

we find

M s

up( 0)= E

4kb, ke~ "sin(nkd+ndy)
k=1

=}
I
-

Il
M =
M s

4kb, e~ "ksin(nkd+ ney)

k=1 2

>
Il

K

+ kz 4kby e~ ksin(k O+ ). (37
=1

Compare now the second term on the right-hand side of Eq.

(37) with Eq. (29). We can identify

o ke 1k (38)
4kbqy
The first term can be then bound from above as
K oo
> > 4kb, e "Mksin(nkf+ngy)
k=1 n=2
K = A D
<> > |4kb, k{—k sin(nk6+ngy)|. (39
k=1 n=2 " 4kbyy

The sine function and the factor K41~ " can be replaced by
unity and we can bound the right-hand side of B2f) by

n n

A . (40

K o A

k

bn,ksg Akz [_
bl,k k=1 n=1 bl,k

K )
> >
k=1 n=2

where we have used the fact thaf,<b,,, which follows
directly from Eq.(36). Using now the facts tha, c<b,
for everyk=K andA, is bounded by some finit€ since it
is a Fourier coefficient, we can bound E@40) by
C?K/(byx—C). Since we can select the free parametkrs
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andM to makeb, « as large as we want, we can make the
remainder series smaller in absolute value tbé&h

The conclusion of this demonstration is that any initial
condition that can be represented in Fourier series can be
approximated to a desired accuracy by pole decomposition.
The number of needed poles is of the ordéM . Of course,
the number of poles thus generated by the initial conditions
may exceed the numb&t(L) found in Eq.(13). In such a
case the excess poles will move to infinity and will become
irrelevant for the short-time dynamics. Thus a smaller num-
ber of poles may be needed to describe the state at larger
times than at=0. We need to stress at this point that the
pole decomposition is overcomplete; for example, if there is
exactly one pole at=0 and we use the above technique to
reach a pole decomposition we would get a large number of
poles in our representation.

B. Initial stages of the front evolution: The exponential stage
and the inverse cascade

In this section we employ the connection between Fourier
expansion and pole decomposition to understand the initial
exponential stage of the evolution of the flame front with
small initial datau(#,t=0). Next we employ our knowledge
of the pole interactions to explain the slow dynamics of
coarsening into the steady-state solution.

Suppose that initially the expansié®9) is available with
all the coefficientA,<1. We know from the linear instabil-
ity of the flat flame front that each Fourier component
changes exponentially in time according to the linear spec-
trum (6). The components with wave vector larger than Eq.
(7) decrease, whereas those with lower wave vectors in-
crease. The fastest growing modekjs=L/2v. In the linear
stage of growth this mode will dominate the shape of the
flame front, i.e.,

u(6,t)~Ay e“k'sin(k.6). (41)
Using Eq.(34) for a large value of/ (which is equivalent to
smaIIAkC) we see that t@(Aﬁc) Eq. (41) can be represented

as a sum ovek./2v poles arranged periodically along tife
axis. Other unstable modes will contribute similar arrays of
poles, but at much higher valuesysince their amplitude is
exponentially smaller. In addition, we have nonlinear correc-
tions to the identification of the modes in terms of poles.
These corrections can be again expanded in terms of Fourier
modes and again identified with poles, which will be farther
away along they axis and with higher frequencies. To see
this one can use Ed37), subtract fromuy(6) the leading
pole representations, and reexpand in a Fourier series. Then
we identify the leading order with double the number of
poles that are situated twice as far away alongtlais.

We note that even when all the unstable modes are
present, the number of poles in the first-order identification is
finite for finite L since there are only/v unstable modes.
Counting the number of poles that each mode introduces, we
get a total number ofL(/v)? poles. The numbet./2v of
poles that are associated with the most unstable mode is pre-
cisely the number allowed in the stable stationary solution;
cf. Eg.(13). When the poles approach the real axis and cusps
begin to develop, the linear analysis no longer holds, but the
pole description does.
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27.0

FIG. 3. Inverse cascade process of coarsening
that occurs after preparing the system with ran-
dom, small initial conditions. One sees that at
successive times the typical scale increases until
the giant cusp forms and attracts all the other side
poles. The effect of the existing numerical addi-
tive noise is to introduce poles that appear as side
cusps that are continuously attracted to the giant
cusp. This effect is obvious to the eye only after
the typical scale is sufficiently large, as is seen in
the last time(see the text for further detajls

17.0

h(x/L)

7.0

-3.0 1 I 1 L
0.0 0.2 0.4 0.6 0.8 1.0

x/L

We now describe the qualitative scenario for the estabthat represent the partial coalescence of poles onto the same
lishment of the steady state. First, we understand that all thé positions. In Fig. 4 we show the width and the velocity of
poles that belong to less unstable modes will be pushed tdhis front as a function of time. One recognizes the exponen-
wards infinity. To see this, think of the system at this stage a$ial stage of growth in which th&/2v poles approach the
an array of uncoupled systems with a scale of the order of axis and then a clear crossover to much slower dynamics in
unity. Each such system will have a characteristic value ofvhich the effective scale in the system grows with a slower
y. As we discussed before, poles that are farther away alonkate.
the y axis will be pushed to infinity. Therefore the system The slow dynamics stage can be understood qualitatively
will remain with theL/2v poles of the most unstable mode. using the previous interpretation of the cascade as follows: if
The net effect of the poles belonging to theonlinearly  the initial number of poles belonging to the unstable mode is
stable modes is to destroy the otherwise perfect periodicity./2v, the initial effective linear scale is:2 Thus the first
of the poles of the unstable mode. To see the effect of thstep of the inverse cascade will be completed in a time scale
higher-order correction to the pole identification we againof the order of 2. At this point the effective linear scale
recall that they can be represented as farther away poles witloubles to 4 and the second step will be completed after
higher frequencies, whose dynamics is similar to the lessuch a time scale. We want to know what the typical length
unstable modes that were just discussed. They do not becalel, seen in the system at times. The typical width of
come more relevant when time goes on. the system at this stage will be proportional to this scale.

Once the poles of the stable modes get sufficiently far Denote the number of cascade steps that took place until
from the real axis, the dynamics of the remaining poles willthis scale is achieved bsj. The total time elapset{l,) is
begin to develop according to the interactions that are dithe sum
rected along the real axis. These interactions are much 8
weaker and the resulting dynamics occur on much longer t(l )NE o (42)
time scales. The qualitative picture is of an inverse cascade vos T
of merging the# positions of the poles. We note that the ] ] ]
system has a set of unstable fixed points that are “cellulaf he geometric sum is dominated by the largest term and we
solutions” described by a periodic arrangement of polegherefore estimaté(l)~I,. We conclude that the scale and
along the real axis with a frequenky These fixed points are the width are linear in the time elapsed from the initial con-
not stable and they collapse, under perturbations, with &litions (~t¢,{=1). In noiseless simulations we firidee
characteristic time scalevhich depends ork) to the next Fig. 4) a value of{ that is{~0.95+0.1.
unstable fixed point ak’=k/2. This process then goes on
indefinitely until k~1/L, i.e., we reach the giant cusp, the
steady-state stable solutiph6]. An interesting consequence of the discussion in the pre-

This scenario is seen very clearly in the numerical simuceding subsection is that the inverse cascade process is an
lations. In Fig. 3 we show the time evolution of the flame effective “clock” that measures the typical time scales in
front starting from small white-noise initial conditions. The this system. For future purposes we need to know the typical
bottom curve pertains to the earliest time in this picture, justime scales when the dynamics is perturbed by random noise.
after the fast exponential growth, and one sees clearly th&o this aim we ran simulations following the inverse cascade
periodic array of cusps that form. The successive image the presencef external noise. The main result that will be
show the progress of the flame front in time and one obused in later arguments is that now the appearance of a typi-
serves the development of larger scales with deeper cusgsal scalel; occurs not after time, but rather according to

C. Inverse cascade in the presence of noise
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10 - 7
FIG. 4. Log-log plots of the front velocity
(lower curve and width(upper curvg as a func-
107 L | tion of time in the inverse cascade process seen in
Fig. 3 in a system of size 2000 and=1. Both
;‘ guantities exhibit an initial exponential growth

that turns to a power-law growttafter t~30).
The velocity is constant after this time and the
width increases like¢. Note that at the earliest
10" ] time there is a slight decrease in the velocity; this
is due to the decay of linearly stable modes that
exist in random initial conditions.

10

l~tf, (~1.2+0.1. (43 argue that this phenomenon is caused by the noisy generation
of new poles. Moreover, it is our contention that a great deal
The numerical confirmation of this law is exhibited in Fig. 5. can be learned about the acceleration in radial geometry by
We also find that the front velocity in this case increases wittconsidering the effect of noise in channel growth. In Ref.

time according to it was shown that any initial condition that is represented in
poles goes to a unique stationary state that is the giant cusp
v~t?,  y~0.48£0.05. (44)  that propagates with a constant veloaity- 1/2 up to small

) ) ) 1/L corrections. In light of our discussion of the preceding
This result will be related to the acceleration of the ﬂamesection' we expect that any smooth enough initial condition
front in noisy simulations, as will be seen in the following will go to the same stationary state. Thus if there is no noise
sections. The resuté3) will be helpful in Sec. VC in esti- iy the dynamics of a finite channel, no acceleration of the

mating the values of the scaling exponents. flame front is possible. What happens if we add noise to the
system?
V. ACCELERATION OF THE FLAME FRONT, POLE For concreteness we introduce an additive white-noise
DYNAMICS, AND NOISE term %(#6,t) to the equation of motiors) where

A major motivation of this section is the observation that
in radial geometry the same equation of motion s_how; an 7( 0,t)=2 7 (t)exp(ik §) (45
acceleration of the flame front. The aim of this section is to K

10

FIG. 5. The same as Fig. 4, but with additive
random noise for a system of size 10665 0.1,
andf=10"13 The velocity does not saturate now
and the exponenf characterizing the increase of
the width with time changes t6=1.2+0.1. The
velocity increases in time liket” with
y~0.48+0.04.

10
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100 1
FIG. 6. Log-log plot of the velocity as a func-
tion of system size for different values of the
noise amplitude Vf=2.5x10713 2.5x 1079,
> 10¢ ] 2.5x10°7, 10°%, 4x10°®, and 2.5¢10 %and

v=0.1. For low values of we observe a power-
law behaviorv ~L*, u~0.42+0.03. For larger
values off there is a crossover to a stronger de-
pendence on the system size; see the text for de-
tails.

10 100

and the Fourier amplitudes, are correlated according to  for every k from a flat distribution in the interval
[ —2f,\2f]. We examined the average steady-state veloc-
(7 (1) n:,(t’)>=f5(k— k")o(t—t'). (46) ity of the front as a function of for fixed f and as a function
of f for fixed L. We found the interesting phenomena that
We will first examine the result of numerical simulations of are summarized here.
noise-driven dynamics and later return to the theoretical (i) When the noise level is fixed the average velocity

analysis. v increases with_; see Fig. 6. There are two different re-
gimes of this behavior. For sufficiently small valuesfcind
A. Noisy simulations L we observe a power law dependenceyadn L:
Previous numerical investigatioh®,15] did not introduce v~L* wu=~0.42+0.03. (47)

noise in a controlled fashion. We will argue later that some

of the phenomena encountered in these simulations can B&r large values of andL the dependence af on L is
ascribed to the(uncontrolled numerical noise. We per- much strongeru>1.5, but we cannot estimate it well be-
formed numerical simulations of E¢p) using a pseudospec- cause of a lack of dynamical range. For a given valué of
tral method. The Adams-Bashforth time-stepping schemehe transition between the two regimes appears upon increas-
was chosen with second-order precision in time. The additivéng L and we denote the critical value ag(f); see Fig. 7.
white noise was generated in Fourier space by choosing The data indicate that

10° | S

Regime Il

FIG. 7. Critical value ofL as a function off

for which the transition from weaker to stronger
dependence af on L is observed; see Fig. 6. In
regime | the noise is relatively small and the cusp
picture is qualitatively correct. In regime Il the
noise is too large to leave the cusp picture intact;
see the text and Figs. 9 and 10 for further details.
The data indicate a power law as explained in the
o text.

Regime |

10

10°
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100 /
/
/
/
/
/
/
/
/
“/
10 A/ p B
s
> // / FIG. 8. Log-log plot of the velocity vs the
i noise amplitude for different system sizes=5,

10, 40, and 160 and=0.1.

Lo(f)~f¢, (48) v~f¢. (49)

with ~1.0£0.2. For sufficiently small value off this dependence is very

(i) When the system size is fixed the average velocity weak andé=~0.02; see Fig. 8. For large values fothe de-
depends orf as pendence is much strongeérs=1+0.1.

10.0

4.0

(a)

L -20.0 . . I
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FIG. 9. Typical flame fronts in regime | of Fig. 7, where the system is sufficiently small not to be terribly affected by the noise. The effect
of noise in this regime is to add additional small cusps to the giant cusga)t{d) we present fronts for growing system sizes
L=10, 20, 40, and 80, respectively=0.1, and\/f=2.5x 10 2. One can observe that when the system size grows there are more cusps

with a more complex structure.
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50.0

-50.0

-150.0

-250.0
0.0

80.0 120.0

X

40.0 160.0

FIG. 10. Typical flame front in regime Il of Fig. 7. The system

size is 160 and the noise amplitude is}2 B0~ 5. This is sufficient
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of the giant cusp grows with decreasiggWe thus under-
stand that, qualitatively speaking, the dynamicsAqf is
characterized by an asymmetric “potential” according to

V(Ay)
TV (50)
V(A)=NAZ—aA3+ ..., (51)

From the linear stability analysis we know thet v/L?; cf.
Eq. (14). We know further that the threshold for nonlinear
instability is atA;~ v3/L?; cf. Eq.(28). This determines that
value of the coefficiena~ 2/3v2. The magnitude of the po-
tential at the maximum is

V(A ~v'ILS. (52

to cause a qualitative change in the appearance of the flame fronthe effect of the noise on the development of the mode
the noise introduces significant levels of small scales structure if\;Sind can be understood from the stochastic equation

addition to the cusps.

(iii) The locus separating weaker dependences of L
and f (regime ) from stronger dependencéegime ) is

V(A
U oA

+71(1). (53

shown in Fig. 7. The giant cusp remains recognizable in botfit is well known [17] that for such dynamics the rate of
regimes. In regime | one observes a series of small cuspascapeR over the potential barrier for small noise is propor-
superposed on the structure of the giant cusp. In Fig. 9 wéonal to

show a set of interfaces with a growing size and with the

same noise. One can observe a strong increase in the number
of cusps and the complexity of their arrangements as the

14
R~ zexp(— v'IfLS). (54)

system size increases. In regime |l there are strong fluctua-

tions in the gradient fieldi(6,t); see Fig. 10.

The conclusion is that any arbitrarily tiny noise becomes

(iv) Measurements of the width of the front indicate that it effective when the system size increases and whedte-

has a a very weak dependencefofor fixed L in regime I.

B. Theoretical discussion of the effect of noise

1. Threshold of instability to added noise

creases. If we drive the system with noise of amplitfidee
system can always be sensitive to this noise when its size
exceeds a critical valud.., which is determined by
f~ V7/LS. ForL>L, the noise will introduce new poles into
the system. Even numerical noise in simulations involving

First we present the theoretical arguments that explain thirge size systems may have a macroscopic influence.
sensitivity of the giant cusp solution to the effect of added ~The appearance of new poles must increase the velocity
noise. This sensitivity increases dramatically with increasingf the front. The velocity is proportional to the mean of
the system siz&. To see this we use again the relationship(4/L)%. New poles distort the giant cusp by additional
between the linear stability analysis and the pole dynamicsSmaller cusps on the wings of the giant cusp, increasfng

Our additive noise introduces perturbations withkallec- ~ UPOn increasing the noise amplitude more and more smaller
tors. We showed previously that the most unstable mode i§USPS appear in the front and inevitably the velocity in-
thek=1 componenf;sin(d). Thus the most effective noisy Creases. This phenomenon is discussed quantitatively in
perturbation is#»;sin(d), which can potentially lead to a Sec. V.
growth of the most unstable mode. Whether or not this mode
will grow depends on the amplitude of the noise. To see this
clearly we return to the pole description. For small values of

2. The noisy steady state and its collapse with large noise
and system size

the amplitudeA; we represenf\;sin(6) as a single pole so-
lution of the functional formve Ysind. The y position is
determined frony = — In|A,|/v and thed position is§=  for
positive A; and =0 for negativeA;. From the analysis of
Sec. lll we know that for very smal\; the fate of the pole
is to be pushed to infinity, independently of i#sposition;
the dynamics is symmetric ih\;——A; wheny is large
enough. On the other hand, when the valué\gfincreases
the symmetry is broken and th# position and the sign of
A, become very important. 1A;>0 there is a threshold

In this subsection we discuss the response of the giant
cusp solution to noise levels that are able to introduce a large
number of excess poles in addition to those existing in the
giant cusp. We will denote the excess number of poles by
6N. The first question that we address is how difficult it is to
insert yet an additional pole when there is already a given
excessoN. To this aim we estimate the effective potential
Vsn(A1), which is similar to Eq(51), but takes into account
the existence of an excess number of poles. A basic approxi-
mation that we employ is that the fundamental form of the

value ofy below which the pole is attracted down. On the giant cusp solution is not seriously modified by the existence
other hand, ifA;<0 and#=0 the repulsion from the poles of an excess number of poles. Of course, this approximation
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breaks down quantitatively already with one excess pole. Lo(f)~f1. (61)
Qualitatively, however, it holds well until the excess number
of poles is of the order of the original numbiEKL) of the  This prediction is in good quantitative agreement with Eq.
giant cusp solution. Another approximation is that the rest 0{48), supporting the analytical theory.
the linear modes play no role in this case. At this point we
limit the discussion, therefore, to the S|tuat|6N<N(L) C. Acceleration of the flame front due to noise

To estimate the parametgrin the effective potential we
consider the dynamics of one pole whgspositiony, is far
abovey .. According to Eq.(14), the dynamics reads

In this section we estimate the scaling exponents that
characterize the velocity of the flame front as a function of
the system size. Our arguments in this section are even less
dy, 2v[N(L)+6N] 1 solid than the prgvious ones, but, nevertheles;, we bglie_ve
T (55  that we succeed in 'capturm.g some of the essentlal_ qualltatl_ve

physics that underlies the interaction between noise and in-
stability and results in the acceleration of the flame front.

To estimate the velocity of the flame front we need to
write down an equation for the mean @ih/dt) given an
arbitrary numbem of poles in the system. This equation

Since theN(L) term cancels against the * term(cf. Sec. II
A), we remain with a repulsive term that in the effective
potential translates to

VSN follows directly from Eq.(4):
A= " (56) dh 11 (2n
R S 2
<dt> L2 277]0 u“de. (62)

Next we estimate the value of the potential at the break-even

point between attraction and repulsion. In Sec. V B 1 we saw, T . .
that a foreign pole has to be inserted belpys, in order to After substitution of Eq(8) in Eq. (62) we get, using Egs.

be attracted towards the real axis. Now we need to push thgl) and(12),

new pole below the position of the existing pole whose index dh N dy, N 12N2
is N(L) — 6N. This position is estimated as in Sec. lll C by < >: k (_ )
employing the TFH distribution functiof25). We find

a & L - L2 (63)

4L The estimates of the second and third terms in this equation
Yon~2In — =gl (57)  are straightforward. Writingd=N(L)+ 6N(L) and remem-

bering thatN(L)=v/L, we find that these terms contribute

/ . . .
As before, this implies a threshold value of the amplitude of ~ VON(L)/L~— LY. The first term will contribute only

single pole solutior,,,sind that is obtained from equating when the current .of' poles is asymmetric. Singe noise intro-
A..=ve'N We thus find in the present case duces poles at a finite value gf whereas the rejected poles

Anmac ¥3(N)?/L2. Using again a cubic representation for stream towards infinity, we have an asymmetry that contrib-
max .

the effective potential we find=2/3v26N and utes to the velocity of the front. To estimate the first term we
remind the reader of our discussion in Sec. IV C. In this
1 v'(SN)® problem the typical time scale for the poles is the coale-

V(Anad = 375 (58 scense time of poles with an initial distanicen thex direc-

tion. In noiseless conditions the typical time scales liken
Repeating the calculation of the escape rate over the potertnhe presence Of, noisef. Eq (‘1,3)] we found ”“me“ca”Y in
tial barrier, we find in the present case Sec. IV C that it scales like.1/s. Accordingly, the typical
' flux of poles can be estimated asl(L)/L*/¢. Thus the cur-

v&N D Erer 6 rentSy, has a stronger dependencelari.e., L%, Tak-
R~z exd — v (oN)*/fL°]. (59 ing the numerical value of= 1.2 we conclude that E§63)
predicts a scaling law47) with ©=0.37, in reasonable

For a given noise amplitude there is always a value of agreement with the numerics. _

L and » for which the escape rate is @(1) as long as We should stress at this point that the argument is not
SN is not too large. WhedN increases the escape rate de-complete. First, we used the inverse cascade measurement to

creases, and eventually no additional poles can creep into th@voke a typical time scale for the coalescence of poles by
system. The typ|ca| numbeiN for fixed values of the pa- motion along thex axis when the distance between them is

rameters is estimated from equating the argument in the ext» and we used this time scale for the coalescence of poles in
ponent to unity a system whose integral scaleLisThis can be taken only as

a lower bound of the exponent characterizing the time scale
SN~ (fLS/v")15, (60)  beacuse of the intervention of additional modes in the larger

system. The simple identification is a sort of “single-mode”
The most important consequence of this relation is #t  approximation in which the dynamics is carried by the most
increases with. faster tharN(L). Accordingly, we expect a unstable mode only. Second, we measured the exponent re-
breakdown of this picture and of the weak-noise behaviotating the velocity to the amplitude of external no[sé Eq.
when SN~N(L), which occurs wherl reaches a critical (49)] and found that is considerably smaller than the value
valueL(f), where 1/5, which is predicted by the previous argument. This indi-
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cates that the typical time scale also has an exflidiépen- measurement mean the theory is quantitative. However, we
dence that is physically plausible, but it was not measured iftbelieve that our consideration extracts the essential ingredi-

our simulations. ents of a correct theory.
The “phase diagram” as a function df and f in this
VI. SUMMARY AND CONCLUSIONS system consists of three regimes. In the first one, discussed

) ) ) in Sec. V B 1, the noise is too small to have any effect on the
The two main messages of this paper are thathere is  gjant cusp solution. In the second the noise introduces excess
an important interaction between the instability of develop-pojes that serve to decorate the giant cusp with side cusps. In
ing fronts and random noise arid) this interaction and its  this regime we find scaling laws for the velocity as a function
implications can be understood qualitatively and sometimegs | andf and we are reasonably successful in understand-
quantitatively using the description in terms of compleXing the scaling exponents. In the third regime the noise is
poles. The pole description is natural in this context, firSiarge enough to create small-scale structures that are not
because it provides an exdeind effectivg representation of  neatly understood in terms of individual poles. It appears
the steady state without noise. Once one succeeds in descriiggm our numerics that in this regime the roughening of the
ing also theperturbationsabout this steady state in terms of fiame front gains a contribution from the small-scale struc-
poles, one achieves a particularly transparent language fge in a way that is reminiscent aftable noise driven
the study of the interplay between noise and instability. Thisgrowth models such as the Kardar-Parisi-Zhang model.
language also allows us to describe in qualitative and semi- one of our main motivations in this research was to un-
quantitative terms the inverse cascade process of increasi@ stand the phenomena observed in radial geometry with
typical lengths when the system relaxes to the steady staigpanding flame fronts. A full analysis of this problem can-
from small, random initial conditions. not be presented here. We note, however, that many of the
~ The main conceptual steps in this paper are as followspsignts offered above translate immediately to that problem.
First, one realizes that the steady-state solution, which igygeed. in radial geometry the flame front accelerates and
characterized bN(L) poles aligned along the imaginary cysps multiply and form a hierarchic structure as time
axis, is marginally stable against noise in a periodic array Obrogresses. Since the radi(and the typical scajeincrease
L values. For all values df the steady state is nonlinearly in this system all the time, new poles will be added to the
unstable against noise. The main and foremost effect of noisgystem even by a vanishingly small noise. The marginal sta-
of a given amplitude is to introduce an excess number of pility found above holds also in this case and the system will
polesoN(L,f) into the system. The existence of this excessyllow the introduction of excess poles as a result of noise.
number of poles is responsible for the additional wrinkling of The results discussed in Ré¢] can be combined with the
the flame front on top of the giant cusp and for the observegyresent insights to provide a theory of radial growth. This
acceleration of the flame front. By considering the noisy aptheory will be offered in a forthcoming paper.
pearance of new poles we rationalize the observed scaling Finally, the success of this approach in the case of flame
laws as a function of the noise amplitude and the systemyropagation raises hope that Laplacian growth patterns may
Size. . ~ be dealt with using similar ideas. A problem of immediate
Theoretically, we therefore concentrate on estimatingnterest is Laplacian growth in channels, in which a finger
oN(L,f). The measurements do not test our theoretical consteady-state solution is known to exist. It is documented that
sideration directly, but rather test the dependence of the vehe stability of such a finger solution to noise decreases rap-
locity on L andf. The only direct test for our theory is the idly with increasing the channel width. In addition, it is un-
critical line shown in Fig. 7. The measured exponent is inderstood that noise brings about additional geometric fea-
accord with our analytic estimates. Nevertheless, we not@yres on top of the finger. There are enough similarities here
that some of our considerations are only qualitative. For extg indicate that a careful analysis of the analytic theory may

ample, we estimate@N(L,f) by assuming that the giant shed as much light on that problem as on the present one.
cusp solution is not seriously perturbed. On the other hand,
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